cho B = √(25x+25) - √(x+1) + √(9/4x+9/4) = 2
a) rút gọn B
b) tìm x để B = 2
B=\(\frac{x-\sqrt{x}}{x-\sqrt{4x}}+\frac{x-9}{2x-\sqrt{25x}-3}\frac{6x-7}{2x-\sqrt{9x}-2}\)
a) rút gọn
b)tìm x để B<1
Cho biểu thức
A=\(\sqrt{x+1}+\sqrt{4x+4}+\sqrt{25x+25}-\sqrt{36x+36}\)\(\left(x\ge-1\right)\)
a) Rút gọn A
b)Tìm xy sao cho A có giá trị bằng 9
Bài 1 Rút gọn
a/ √9 - √17 x √ 9 + √17 ( √ chỗ số 9 kéo dài ra 17 )
b/ 2√2 ( √3 - 2 ) + ( 1 + 2√2 ) ^2 + 2√6
Bài 2 Giải phương trình sau :
a/ √4x + 20 - 3√ 5 + x + 4/3 √9x + 45 ( kéo dài √ ) = 6
b/ √25x - 25 - 15/2√x-1/9 = 6 + √x-1 (kéo dài √ )
Bài 3 So sánh
√2014 + √2016 với 2√2005
A)\(\sqrt{25x-25}\)-\(\dfrac{15}{2}\)\(\sqrt{\dfrac{x-1}{9}}\)=6+\(\sqrt{x-1}\)
B) A=\(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}\)+\(\dfrac{x\sqrt{x}}{\sqrt{x}+1}\)
a) Đặt điều kiện để biểu thức có nghĩa A
b) Rút gọn biểu thức A
A) \(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{5}{2}\sqrt{x-1}-\sqrt{x-1}=6\)
\(\Leftrightarrow\dfrac{3}{2}\sqrt{x-1}=6\)
\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\)
\(\Leftrightarrow x=17\)
Vậy, x=17
A: \(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}=6+\sqrt{x-1}\)
=>5/2*căn x-1-căn x-1=6
=>3/2*căn x-1=6
=>căn x-1=4
=>x-1=16
=>x=17
B:
a: ĐKXĐ: x>=0; x<>1
b: Sửa đề: \(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\)
=căn x-1+x-căn x+1
=x
B) a) \(ĐK:\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b)Sửa đề \(A=\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\sqrt{x}-1+x-\sqrt{x}+1=x\)
C1
A= 25x-25-9x-9+ √x-1
a, Tìm điều kiện để A có nghĩa
b,Rút gọn A
c, Tìm x để A=12
C2
Cho biểu thức: P=3x- √x^2 - 10x+25
a, Rút gọn biểu thức
b, Tính giá trị của P khi x=2
Câu 2:
a: Ta có: \(P=3x-\sqrt{x^2-10x+25}\)
\(=3x-\left|x-5\right|\)
\(=\left[{}\begin{matrix}3x-x+5=2x+5\left(x\ge5\right)\\3x+x-5=4x-5\left(x< 5\right)\end{matrix}\right.\)
b: Vì x=2<5 nên \(P=4\cdot2-5=8-5=3\)
Cho biểu thức A=(3+x/3-x - 3 -x/3+x - 4x^2/x^2-9) : (5/3-x - 4x+2/3x-x^2) a. Rút gọn A b. Tìm x để A=3 c.tìm x để A>4x
1. Cho bt P= (1/√x+2 + 1/√x-2 ) . √x-2/√x với x>0, x khác 4
a) rút gọn P
b) tìm x để P>1/3
c) tìm các giá trị thực của x để Q=9/2P có giá trị nguyên
2. Cho 2 biểu thức
A= 1-√x / 1+√ x và B= ( 15-√x/ x-25 + 2/√x+5) : √x+1/√ x-5 với x lớn hơn hoặc bằng 0, x khác 25
a) tính giá trị của A khi x= 6-2√5
b) rút gọn B
c) tìm a để pt A-B=a có nghiệm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Bài 1 Tìm X biết (x+4)²-81=0 Bài 2 cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z Bài 3 A) x³-2x² B) y²-2y-x²+1 C) (x+1)²-25
\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)
\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)
\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)
\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)
Cho A= \(\dfrac{4}{x-3}\)và B= \(\dfrac{4x}{x^2-9}\)- \(\dfrac{x-3}{x+3}\)
a) cho x= 6 thì giá trị A
b) Rút gọn B
c) P= B - A tìm x thuộc Z để P nhận giá trị lớn nhất.
a: Khi x=6 thì \(A=\dfrac{4}{6-3}=\dfrac{4}{3}\)
b: \(B=\dfrac{4x}{x^2-9}-\dfrac{x-3}{x+3}\)(ĐKXĐ: \(x\notin\left\{3;-3\right\}\))
\(=\dfrac{4x}{\left(x-3\right)\left(x+3\right)}-\dfrac{x-3}{x+3}\)
\(=\dfrac{4x-\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{4x-x^2+6x-9}{\left(x+3\right)\left(x-3\right)}=\dfrac{-x^2+10x-9}{\left(x+3\right)\left(x-3\right)}\)