cho hình vuông ABCD,đg chéo BD lấy BH=BA(H nằm giữa B và D).Qua H kẻ đg thẳng vuông góc vs BD và đg này cắt AD tại O
a)So sánh OA;OH;HD
b)Xác định vị trí tương đối của đg thẳng BD vs (O;OA)
Cho hình vuông ABCD, Trên đường chéo BD lấy BH = BA. Qua H kẽ đường thẳng vuông góc với BD và đường vuông góc cắt AD tại O
a) So sánh: OA, OH, HD
b) Xác định vị trí tương đối của đường thẳng BD với vòng ( O; A)
Cho hình chữ nhật ABCD có AD=6cm: AB=8cm: hai đg chéo AC và BD cắt nhau tại 0. Qua D kẻ đg thẳng d vuông góc với BD, d cắt tia BC tại E
a, Gọi K là giao điểm của OE Và HC. CM K là trung điểm của HC và tỉ số diện tích của tam giác EHC và diện tích của tam giác EDB
b, CMR: ba đường thẳng OE , CD, BH đồng qui
cho đg tròn tâm O bk=3cm 1 điểm A cách O 5cm vẻ 2 tiếp tuyến AB,AC vs đg tròn vẽ đk BD
a.cm: CD//OA
b. tính P và Sabc
c. qua C kẻ đt vuông góc vs BD đt này cắt CD tại E đt AE và OC cắt nhau tại I đg thẳng DE và AC cắt nhau tại G
cm: IG là đg trug trực của OA
Cho đg tròn (O; R) cố định và đg thẳng d cố định ko cắt (O; R) .Từ một điểm A bất kì trên đg thẳng d kẻ tiếp tuyến AB vs đg tròn (O; R) ,B là tiếp điểm. Kể dây BC vuông góc AO tại H (H€OA)
a) chứng minh AC là tiếp tuyến của (O; R)
b) kẻ OI vuông góc vs đg thẳng d (I€d) ,OI cắt BC tại K. Chứng minh OH×OA=OI×OK=R^2
c) chứng minh khi A thay đổi trên đg thẳng d thì đg thẳng BC luôn đi qua 1 điểm cố định
a) Xét tam giác cân OBC có OK là đường cao nên đồng thời là phân giác.
Vậy thì ^ BOA = ^ COA Suy ra ΔABO=ΔACO(c−g−c)⇒ ^ ACO = ^ ABO =90o
Vậy nên AC là tiếp tuyến của đường tròn (O)
bó tay. com k mk nha!!!
Cho đg tròn (O; R) cố định và đg thẳng d cố định ko cắt (O; R) .Từ một điểm A bất kì trên đg thẳng d kẻ tiếp tuyến AB vs đg tròn (O; R) ,B là tiếp điểm. Kể dây BC vuông góc AO tại H (H€OA)
a) chứng minh AC là tiếp tuyến của (O; R)
b) kẻ OI vuông góc vs đg thẳng d (I€d) ,OI cắt BC tại K. Chứng minh OH×OA=OI×OK=R^2
c) chứng minh khi A thay đổi trên đg thẳng d thì đg thẳng BC luôn đi qua 1 điểm cố định
GIÚP MÌNH 2 CÂU CUỐI THÔI
cho hình thang ABCD (AB//CD) gọi giao điểm 2 đg chéo AC và BD là O, OA=4cm, OC=8cm, AB=5cm
a) tính CD, c/m: AO.OD=OC.OB
b) qua O kẻ đg thẳng HK ⊥ AB( H∈AB,K∈CD). Tính \(\dfrac{OH}{OK}\)
c) qua O kẻ đg thẳng // với 2 đáy, cắt AD, BC lần lượt tại E, F. C/m: \(\dfrac{AE}{AD}+\dfrac{CF}{BC}=1\)
b) -Xét △AOH có: AB//CD (gt).
\(\Rightarrow\dfrac{AO}{OC}=\dfrac{OH}{OK}\) (định lí Ta-let).
\(\Rightarrow\dfrac{OH}{OK}=\dfrac{4}{8}=\dfrac{1}{2}\).
c) -Xét △ADC có: OE//DC (gt).
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AO}{AC}\) (định lí Ta-let).
-Xét △ABC có: OF//AB (gt).
\(\Rightarrow\dfrac{AO}{AC}=\dfrac{BF}{BC}\) (định lí Ta-let).
Mà \(\dfrac{AE}{AD}=\dfrac{AO}{AC}\) nên \(\dfrac{AE}{AD}=\dfrac{BF}{BC}\)
\(\Rightarrow\dfrac{AE}{AD}+\dfrac{CF}{BC}=\dfrac{BF}{BC}+\dfrac{CF}{BC}=\dfrac{BC}{BC}=1\)
GIÚP MÌNH 2 CÂU CUỐI THÔI
cho hình thang ABCD (AB//CD) gọi giao điểm 2 đg chéo AC và BD là O, OA=4cm, OC=8cm, AB=5cm
a) tính CD, c/m: AO.OD=OC.OB
b) qua O kẻ đg thẳng HK ⊥ AB( H∈AB,K∈CD). Tính \(\dfrac{OH}{OK}\)
c) qua O kẻ đg thẳng // với 2 đáy, cắt AD, BC lần lượt tại E, F. C/m: \(\dfrac{AE}{AD}+\dfrac{CF}{BC}=1\)
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Qua A kẻ đg thẳng d vuông góc vs AM. Qua M kẻ các đg thẳng vuông góc vs AB và AC, chúng cắt d theo thứ tự ở D và E. CMR:
a, BD// CE
b, DE= BD+CE
Cho nửa (O) và đk AB. C cố định e OA. Qua C kẻ đtg vuông góc OA cắt (O) tại D. Lấy M thuộc cung BD, tiếp tuyến tại M cắt CD tại E. I là tâm đg tròn ngoại tiếp DFM. C/m D,I,B thẳng hàng