Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
duong thi phuong
Xem chi tiết
Nguyễn Quang Hải
9 tháng 5 2018 lúc 15:47

A B C I M N P

Gọi IM , IN, IP lần lượt là khoảng cách từ điểm I đến BC, AB , AC

Vì BI là tia phân giác của \(\widehat{B}\)

=> IM=IN ( theo t/c điểm trên tia phân giác của 1 góc)   (1)

Vì CI là tia phân giác của\(\widehat{C}\)

=> IM=IP (theo t/c điểm nằm trên tia pg của 1 góc)       (2)

Từ (1) và (2) 

=> IN=IP (=IM)

=> I cách đều 2 cạch của \(\widehat{A}\)

=> AI là tia pg tam giác ABC (đpcm)

Trần Lê Na
Xem chi tiết
Vương Minh Hiếu
Xem chi tiết
Lê Thu Hằng
Xem chi tiết
NGUYỄN THẾ HIỆP
16 tháng 2 2017 lúc 18:34

A B C I M N P

Gọi M,N,P lần lượt là hình chiếu của I lên các cạnh BC,BA,CA

Xét \(\Delta\)BIN và \(\Delta\)BIM có
\(\widehat{IBN}=\widehat{IBM}\)(BI là phân giác)

BI chung

=> \(\Delta\)BIN = \(\Delta\)BIM (cạnh huyền-góc nhọn)

=> IM=IN

CM tương tự có: \(\Delta\)CIP=\(\Delta\)CIM => IM=IP

=> IM=IN=IP

Xét \(\Delta\)AIN và \(\Delta\)AIP vuông tại N và P có:

IA chung

IN=IM

=>  \(\Delta\)AIN = \(\Delta\)AIP (cạnh huyền -cạnh góc vuông)

=> \(\widehat{IAN}=\widehat{IAP}\)=> IA là phân giác góc A (DPCM)

A2 NEVER DIE
Xem chi tiết
Trần Thị Hồng Vân
Xem chi tiết
lê xuân toản
Xem chi tiết
Hoàng Minh Phúc 24_
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 12 2021 lúc 17:59

Kẻ phân giác IH của \(\widehat{BIC}\)

Ta có \(\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}=120^0\)

Mà BI,CI là phân giác \(\widehat{ABC};\widehat{ACB}\Rightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=60^0\)

Xét tam giác IBC: \(\widehat{BIC}=180^0-\left(\widehat{IBC}+\widehat{ICB}\right)=120^0\)

\(\Rightarrow\widehat{BIH}=\widehat{CIH}=\dfrac{1}{2}\widehat{BIC}=60^0\)

Lại có \(\widehat{BIE}=\widehat{DIC}=180^0-\widehat{BIC}=60^0\) (kề bù)

Do đó \(\widehat{BIH}=\widehat{CIH}=\widehat{BIE}=\widehat{DIC}\)

\(\left\{{}\begin{matrix}\widehat{BIH}=\widehat{BIE}\\BI\text{ chung}\\\widehat{IBE}=\widehat{IBH}\end{matrix}\right.\Rightarrow\Delta BEI=\Delta BHI\left(g.c.g\right)\\ \Rightarrow EI=HI\left(1\right)\\ \left\{{}\begin{matrix}\widehat{CIH}=\widehat{DIC}\\CI\text{ chung}\\\widehat{HIC}=\widehat{DIC}\end{matrix}\right.\Rightarrow\Delta CDI=\Delta CHI\left(g.c.g\right)\\ \Rightarrow DI=HI\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow IE=ID\)

Phạm Kỳ Anh
Xem chi tiết