Cho A = 3/10 (19831983 - 19171917)
CMR A là số tự nhiên
1) CMR biểu thước sau ko là lập phương của 1 số tự nhiên :
10150 + 5.1050 + 1
2) CMR: tích của 3 số tự nhiên liên tiếp ko là lập phương của một số tự nhiên
3) CMR : với mọi số tự nhiên a , tồn tại số tự nhiên b sao cho : ab + 4 là số chính phương
Cho số tự nhiên ab bằng 3 lần tích các chữ số của nó. CMR
a)CMR b ⁞ a
b)Đặt b = k.a; CMR 10 ⁞ k
c)Tìm số tự nhiên ab ?
đề có lộn không bạn. Mk không hiểu gì cả?
Cho số tự nhiên ab bằng 3 lần tích các chữ số của nó. CMR
a)CMR b ⁞ a
b)Đặt b = k.a; CMR 10 ⁞ k
c)Tìm số tự nhiên ab ?
Bài 1: CMR từ 102 số tự nhiên bất kì luôn có thể tồn tại 2 số có tổng hoặc hiệu chia hết cho 200.
Bài 2: CMR từ 10 số tự nhiên bất kì (a1, a2, a3, ... , a10) thì luôn tồn tại 4 số có tổng chia hết cho 4.
Bài 3: CMR từ 13 số tự nhiên bất kì luôn tồn tại 4 số có tổng chia hết cho 4.
Cmr a:102011+2/3 là 1 số tự nhiên
b:102012+8/9 là 1 số tự nhiên
CMR với mọi n là số tự nhiên thì A=3^n + 1 ko chia hết cho 10^2016
Xét \(n=2k+1\)
\(\Rightarrow A=3^{2k+1}+1=3.9^k+1\)
Ta có: \(9^k\) chia cho 5 dư - 1 hoặc 1
\(\Rightarrow3.9^k\)chia 5 dư - 3 hoặc 3
\(\Rightarrow3.9^k+1\)chia 5 dư - 2 hoặc 4
\(\Rightarrow A\) không chia hết cho 5 nên A không chia hết cho \(10^{2016}\)
Xét \(n=2k\)
\(\Rightarrow A=3^{2k}+1=3^{2k}+1\)
Vì \(3^{2k}\)là số chính phương nên chia cho 4 dư 0 hoặc 1.
\(\Rightarrow A=3^{2k}+1\)chia cho 4 dư 1 hoặc 2.
\(\Rightarrow A\)không chia hết cho 4 nên A không chia hết cho \(10^{2016}\)
CMR A=3/10+3/11+3/12+3/13+3/14 không phải là số tự nhiên
a) tìm số nguyên n sao cho : n^3 +3 chia hết cho n-1
b) CMR : 10 ^ 2006 +53 / 9 là một số tự nhiên
a,(n^2+3)/(n-1) = n + 1 + 4/(n-1)
vậy cần tìm n để n-1 là ước của 4
suy ra n=2,3,5.
b,10^2006 luôn có tổng các chữ số bằng 1
=> 10^2006 + 53 luôn có tổng các chữ số bằng 9 do đó nó chia hết cho 9
=> (10^2006)+53)/9 là một số tự nhiên
tích nha
a,(n^2+3)/(n-1) = n + 1 + 4/(n-1)
vậy cần tìm n để n-1 là ước của 4
suy ra n=2,3,5
b,10^2006 luôn có tổng các chữ số bằng 1
=> 10^2006 + 53 luôn có tổng các chữ số bằng 9 do đó nó chia hết cho 9
=> (10^2006)+53)/9 là một số tự nhiên
tích mình đi
a,(n^2+3)/(n-1) = n + 1 + 4/(n-1)
vậy cần tìm n để n-1 là ước của 4
suy ra n=2,3,5.
b, 10^2006 luôn có tổng các chữ số bằng 1
=> 10^2006 + 53 luôn có tổng các chữ số bằng 9 do đó nó chia hết cho 9
=> (10^2006)+53)/9 là một số tự nhiên
cho A= (10^n + 10^n-1 + ... + 10 + 1)(10^n+1 + 5)+1
CMR A là só chính phương nhưng A không là lập phương của một số tự nhiên