Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
I lay my love on you
Xem chi tiết
Nguyễn Ngọc Khanh (Team...
24 tháng 9 2020 lúc 21:25

Bài này là bài cực khó, phạm vi toán lớp 10 rất khó để giải quyết trọn vẹn bài này nên mình xin phép dùng 1 số kiến thức của lớp 11, có gì khó hiểu thì bạn nhắn cho mình, hoặc nên tự tìm hiểu trên mạng nha !! :))

a) G là trọng tâm tam giác ABC \(\Rightarrow3\overrightarrow{OG}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\)

 \(P_{G/\left(O\right)}=OG^2-R^2=\left(\overrightarrow{OG}\right)^2-R^2=\frac{1}{9}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)^2-R^2\)

\(=\frac{\overrightarrow{OA}^2+\overrightarrow{OB}^2+\overrightarrow{OC}^2+2\overrightarrow{OA}.\overrightarrow{OB}+2\overrightarrow{OA}.\overrightarrow{OC}+2\overrightarrow{OB}.\overrightarrow{OC}}{9}-R^2\)

Vì \(\overrightarrow{OA}^2=OA^2=R^2,\overrightarrow{OB}^2=OB^2=R^2,\overrightarrow{OC}^2=OC^2=R^2\)

nên \(\frac{\overrightarrow{OA}^2+\overrightarrow{OB}^2+\overrightarrow{OC}^2+2\overrightarrow{OA}.\overrightarrow{OB}+2\overrightarrow{OA}.\overrightarrow{OC}+2\overrightarrow{OB}.\overrightarrow{OC}}{9}-R^2=\frac{3R^2+2\overrightarrow{OA}.\overrightarrow{OB}+2\overrightarrow{OA}.\overrightarrow{OC}+2\overrightarrow{OB}.\overrightarrow{OC}}{9}-R^2\)

\(=\frac{-6R^2+2\overrightarrow{OA}.\overrightarrow{OB}+2\overrightarrow{OA}.\overrightarrow{OC}+2\overrightarrow{OB}.\overrightarrow{OC}}{9}=-\frac{\left(\overrightarrow{OA}-\overrightarrow{OB}\right)^2+\left(\overrightarrow{OA}-\overrightarrow{OC}\right)^2+\left(\overrightarrow{OB}-\overrightarrow{OC}\right)^2}{9}\)

\(=-\frac{\overrightarrow{BA}^2+\overrightarrow{CA}^2+\overrightarrow{CB}^2}{9}=-\frac{AB^2+AC^2+BC^2}{9}\)

b) Theo ĐỊNH LÍ EULER: \(OH=3OG\)

Theo câu a: \(9OG^2-9R^2=-AB^2-AC^2-BC^2\)

\(P_{H/\left(O\right)}=OH^2-R^2=9OG^2-9R^2+8R^2=8R^2-AB^2-AC^2-BC^2\)

Có: \(\frac{AB}{sinC}=\frac{BC}{sinA}=\frac{CA}{sinB}=2R\)thế lên trên ta được:

\(8R^2-AB^2-AC^2-BC^2=8R^2-4R^2sin^2C-4R^2sin^2A-4R^2sin^2B\)

\(=4R^2\left(2-sin^2A-sin^2B-sin^2C\right)=4R^2\left(cos^2A+cos^2B+cos^2C-1\right)\)(*)

Xét: \(cos^2A+cos^2B+cos^2C=\frac{1+cos2A}{2}+\frac{1+cos2B}{2}+cos^2C\)

\(=1+\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)

Xét \(cos\left(A+B\right)=cos\left(180^0+C\right)=-cosC\)thế lên trên ta được:

\(1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C=1-cosC.cos\left(A-B\right)-cosC.cos\left(A+B\right)\)

\(1-cosC.\left[cos\left(A+B\right)+cos\left(A-B\right)\right]=1-2cosC.cosA.cos\left(-B\right)\)

Mà \(cos\left(-B\right)=cos\left(B\right)\)nên ta kết luận: \(cos^2A+cos^2B+cos^2C=1-2cosA.cosB.cosC\)

Thế vào (*): \(\Rightarrow P_{H/\left(O\right)}=4R^2\left(1-2cosA.cosB.cosC-1\right)=-8R^2cosA.cosB.cosC\)

Đề hơi sai nha bạn, mà thoi không sao :))

Khách vãng lai đã xóa
Sách Giáo Khoa
Xem chi tiết
Nguyễn Quốc Anh
12 tháng 4 2017 lúc 14:07

Ta có : \(a\left(bcosC-ccosB\right)=abcosC-accosB\)

\(=\dfrac{a^2+b^2-c^2}{2}-\dfrac{a^2+c^2-b^2}{2}=\dfrac{2b^2-2c^2}{2}\)

\(=b^2-c^2\)

Vậy \(b^2-c^2=a\left(bcosC-ccosB\right)\)

Nguyễn Thị Lan Anh
Xem chi tiết
Bùi Quang Minh
27 tháng 12 2021 lúc 22:58

mới lớp 7 a ới

Khách vãng lai đã xóa
trần nhật minh
Xem chi tiết
Thảo Vi
Xem chi tiết
Hồ Thị Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 10 2021 lúc 15:10

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

Cô gái thất thường (Ánh...
Xem chi tiết
Phùng Minh Quân
15 tháng 7 2019 lúc 11:52

1) a) Từ C dựng đường cao CF 

Ta có: \(\sin A=\frac{CF}{b};\sin B=\frac{CF}{a}\)\(\Rightarrow\)\(\frac{\sin A}{\sin B}=\frac{\frac{CF}{b}}{\frac{CF}{a}}=\frac{a}{b}\)\(\Leftrightarrow\)\(\frac{a}{\sin A}=\frac{b}{\sin B}\) (1) 

Từ A dựng đường cao AH 

Có: \(\sin B=\frac{AH}{c};\sin C=\frac{AH}{b}\)\(\Rightarrow\)\(\frac{\sin B}{\sin C}=\frac{\frac{AH}{c}}{\frac{AH}{b}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\frac{b}{\sin B}=\frac{c}{\sin C}\) (2) 

(1), (2) => đpcm 

b) từ a) ta có: \(\hept{\begin{cases}\sin A=\frac{CF}{b}\\\cos A=\frac{AF}{b}\end{cases}\Leftrightarrow\hept{\begin{cases}CF=b.\sin A\\AF=b.\cos A\end{cases}}}\)

Có: \(BF=c-AF=c-b.\cos A\)

Py-ta-go: 

\(a^2=BF^2+CF^2=\left(c-b.\cos A\right)^2+\left(b.\sin A\right)^2=c^2+b^2.\cos^2A+b^2.\sin^2A-2bc.\cos A\)

\(=b^2\left(\sin^2A+\cos^2A\right)+c^2-2bc.\cos A=b^2+c^2-2bc.\cos A\) (đpcm) 

c) Có: \(\hept{\begin{cases}\cos A=\frac{AF}{b}\\\cos B=\frac{BF}{a}\end{cases}\Rightarrow b.\cos A+a.\cos B=b.\frac{AF}{b}+a.\frac{BF}{a}=AF+BF=c}\)

bài 2 mk có làm r bn ib mk gửi link nhé 

Nguyễn Ngọc Thư Kỳ
Xem chi tiết
Music Hana
Xem chi tiết