Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Hiếu
Xem chi tiết
Xyz OLM
27 tháng 12 2021 lúc 22:06

a) ĐKXĐ : \(3\le x\le7\)

Ta có \(A=1.\sqrt{x-3}+1.\sqrt{7-x}\)

\(\le\sqrt{\left(1+1\right)\left(x-3+7-x\right)}=\sqrt{8}\)(BĐT Bunyacovski)

Dấu "=" xảy ra <=> \(\dfrac{1}{\sqrt{x-3}}=\dfrac{1}{\sqrt{7-x}}\Leftrightarrow x=5\)

 

Nguyễn Hoàng Minh
27 tháng 12 2021 lúc 22:07

\(1,\\ a,A\le\sqrt{\left(x-3+7-x\right)\left(1+1\right)}=\sqrt{8}=2\sqrt{2}\\ A^2=4+2\sqrt{\left(x-3\right)\left(7-x\right)}\ge4\Leftrightarrow A\ge2\\ \Leftrightarrow2\le A\le2\sqrt{2}\\ \left\{{}\begin{matrix}A_{min}\Leftrightarrow\left(x-3\right)\left(7-x\right)=0\Leftrightarrow...\\A_{max}\Leftrightarrow x-3=7-x\Leftrightarrow x=5\end{matrix}\right.\)

\(B=\dfrac{\dfrac{5}{2}\left(4x^4+4x^2+1\right)+2\left(x^4-x^2+\dfrac{1}{4}\right)}{\left(2x^2+1\right)^2}\\ B=\dfrac{\dfrac{5}{2}\left(2x^2+1\right)^2+2\left(x^2-\dfrac{1}{2}\right)^2}{\left(2x^2+1\right)^2}=\dfrac{5}{2}+\dfrac{2\left(x^2-\dfrac{1}{2}\right)^2}{\left(2x^2+1\right)^2}\ge\dfrac{5}{2}\)

\(B=\dfrac{3\left(4x^4+4x^2+1\right)-4x^2}{\left(1+2x^2\right)^2}=\dfrac{3\left(1+2x^2\right)^2-4x^2}{\left(1+2x^2\right)^2}=3-\dfrac{4x^2}{\left(1+2x^2\right)^2}\)

Vì \(-\dfrac{4x^2}{\left(1+2x^2\right)^2}\le0\Leftrightarrow B\le3\)

\(\Leftrightarrow\left\{{}\begin{matrix}B_{min}\Leftrightarrow x^2=\dfrac{1}{2}\Leftrightarrow x=\pm\dfrac{1}{\sqrt{2}}\\B_{max}\Leftrightarrow x=0\end{matrix}\right.\)

Nguyễn Hoàng Minh
27 tháng 12 2021 lúc 22:15

\(2,\)

Ta có \(\left(y-2x\right)^2=\left(-2x+y\right)^2=\left[\dfrac{1}{3}\left(-6x\right)+\dfrac{1}{4}\left(4y\right)\right]^2\)

\(\Leftrightarrow\left(y-2x\right)^2\le\left[\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{4}\right)^2\right]\left[\left(-6x\right)^2+\left(4y\right)^2\right]=\dfrac{5^2}{3^2\cdot4^2}\left(36x^2+16y^2\right)=\dfrac{5^2}{4^2}\\ \Leftrightarrow\left|y-2x\right|\le\dfrac{5}{4}\\ \Leftrightarrow-\dfrac{5}{4}\le y-2x\le\dfrac{5}{4}\\ \Leftrightarrow\dfrac{15}{4}\le y-2x+5\le\dfrac{25}{4}\)

\(Max\Leftrightarrow\left\{{}\begin{matrix}-18x=16y\\y-2x=\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=\dfrac{9}{20}\end{matrix}\right.\\ Min\Leftrightarrow\left\{{}\begin{matrix}-18x=16y\\y-2x=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{9}{20}\end{matrix}\right.\)

 

Blkscr
Xem chi tiết
Nguyễn Thị Như Quỳnh
5 tháng 11 2021 lúc 21:00

giê ơt nha bn

Khách vãng lai đã xóa
Kiều Chinh
Xem chi tiết
Phạm Ngọc Mai
7 tháng 11 2017 lúc 21:08

A= \(\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}\)

=\(\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

=\(\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)

\(=\left|1-\sqrt{x-1}\right|+\left|\sqrt{x-1}+1\right|\)

\(\ge\left|\sqrt{x-1}+1+1-\sqrt{x-1}\right|\)

=2.

dấu = khi và chỉ khi \(\left(\sqrt{x-1}+1\right).\left(1-\sqrt{x-1}\right)=0\)

Nguyễn Thị Như Quỳnh
5 tháng 11 2021 lúc 20:54

=0 nha bn

Khách vãng lai đã xóa
Kiều Chinh
Xem chi tiết
Đinh Đức Hùng
11 tháng 8 2017 lúc 20:36

\(A=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)

\(=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

\(=\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)

\(=\left|1-\sqrt{x-1}\right|+\left|\sqrt{x-1}+1\right|\)

\(\ge\left|1-\sqrt{x-1}+\sqrt{x-1}+1\right|=2\)

Dấu "=" xảy ra \(\Leftrightarrow\left(1-\sqrt{x-1}\right)\left(\sqrt{x-1}+1\right)\ge0\Leftrightarrow0\le x\le2\)

Vậy \(A_{min}=2\) tại \(0\le x\le2\)

Nguyễn Viết Đạt
5 tháng 11 2021 lúc 17:58
Ìyfkfebeheibeyekeojdueb
Khách vãng lai đã xóa
Nguyễn Đăng Khôi
5 tháng 11 2021 lúc 18:22

adasdasdasd á d dá đâsdas

Khách vãng lai đã xóa
Tran Nguyen Linh Chi
Xem chi tiết
Hoàng Anh Thắng
7 tháng 10 2021 lúc 15:25

T có A=\(\dfrac{x+3}{\sqrt{x}}=\sqrt{x}+\dfrac{3}{\sqrt{x}}\)

Áp dụng Bđt cô si

Taco\(A=\sqrt{x}+\dfrac{3}{\sqrt{x}}\ge2\sqrt{\dfrac{3}{\sqrt{x}}.\sqrt{x}}=2\sqrt{3}\)

Vậy\(Min_A=2\sqrt{3}\)

Dấu '=' xảy ra <=>x=0

Nguyễn Hoàng Minh
7 tháng 10 2021 lúc 15:49

Áp dụng BĐT cosi cho \(x>0\left(ĐKXĐ\right)\)

\(ĐK:x>0\\ A=\dfrac{x+3}{\sqrt{x}}=\sqrt{x}+\dfrac{3}{\sqrt{x}}\ge2\sqrt{\sqrt{x}\cdot\dfrac{3}{\sqrt{x}}}=2\sqrt{3}\\ A_{min}=2\sqrt{3}\Leftrightarrow\sqrt{x}=\dfrac{3}{\sqrt{x}}\Leftrightarrow x^2=3\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)

 

Trần Nguyễn Linh Chi
Xem chi tiết
KuDo Shinichi
Xem chi tiết
Trịnh Nguyễn Tấn Phát
27 tháng 11 2016 lúc 20:59

A = \(x-2008-2.\frac{1}{2}.\sqrt{x-2008}+\frac{1}{4}+2008\)

\(\left(\sqrt{x-2008}-\frac{1}{2}\right)^2+2008\ge2008\)

Vậy Amax = 2008 khi \(\sqrt{x-2008}-\frac{1}{2}=0\)tự giải tìm x 

Kiều Chinh
Xem chi tiết
TFBoys
11 tháng 8 2017 lúc 19:37

ĐK: \(x\ge1\)

\(A=\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

\(=\left|1-\sqrt{x-1}\right|+\left|\sqrt{x-1}+1\right|\)

\(\ge\left|1-\sqrt{x-1}+\sqrt{x-1}+1\right|=2\)

Đẳng thức xảy ra \(\Leftrightarrow\left(1-\sqrt{x-1}\right)\left(\sqrt{x-1}+1\right)\ge0\)

\(\Leftrightarrow1\le x\le2\)

Bùi Bảo Châu
Xem chi tiết