Cho M=\(\frac{2}{1+\sqrt{a}}\)
Tìm số tự nhiên a để 18M là số chính phương
\(M=\frac{2}{1+\sqrt{2}}\)
Tìm số tự nhiên a để 18M là số chính phương
\(M=\frac{2}{1+\sqrt{a}}\)
tìm số tự nhiên a dể 18M là số chính phương
Ta có:
\(M=\frac{2}{1+\sqrt{a}}\le2\)
Mà để 18M là số chính phương thì M=2
Suy ra: \(\frac{2}{1+\sqrt{a}}=2\)
Suy ra: \(1+\sqrt{a}=1\)
\(\sqrt{a}=0\Rightarrow a=0\)
Vậy a=0
cho biểu thức (\(\frac{1}{1-\sqrt{a}}-\frac{1}{1+\sqrt{a}}\))(\(\frac{1}{\sqrt{a}}-1\)) với a>o ,a khác 0
tìm số tự nhiên a để 18m là số chính phương
Ta có M = \(\frac{2}{1+\sqrt{a}}\le2\)
Mà để 18M là số chính phương thì M = 2
=> \(\frac{2}{1+\sqrt{a}}\)=2
=> 1 + \(\sqrt{a}\)=1
<=> \(\sqrt{a}=0\Rightarrow a=0\)( thỏa mãn đk)
Vậy a = 0
\(18M=\frac{36}{1+\sqrt{a}}\)do 36 là số chính phương nên 18M là số chính phương thì 1+\(\sqrt{a}\inƯ\left(36\right)\)chính phương
=> \(1+\sqrt{a}\in\left\{1;4;9;36\right\}\)
\(\Rightarrow a=\left\{9;64;1225\right\}\)với \(a>0;a\ne1\)
a. tìm a là số tự nhiên để 17a+8 là số chính phương
b. tìm a là số tự nhiên để 13a+a là số chính phương
c. tìm n là số tự nhiên sao cho 3n+4 là số chính phương
d. tìm n là số tự nhiên sao cho 2n+9 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
cho \(S_n=\left(\frac{3+\sqrt{5}}{2}\right)^n+\left(\frac{3-\sqrt{5}}{2}\right)^n-2\)là một số tự nhiên
Tìm số tự nhiên n để Sn là số chính phương
Với M=\(\frac{2}{1+\sqrt{a}}\)
Tìm số tự nhiên a để 18M là số chính phương
Bạn tham khảo:
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)
\(\left(x\ge0;x\ne25\right)\)
a, Rút gọn P. Tìm các số thực x để P > -2.
b, Tìm các số tự nhiên x là số chính phương sao cho P là số nguyên.
a, \(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)
\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{\sqrt{x}-5}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)
\(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}-\frac{3x+4\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)
\(P=\frac{x-3\sqrt{x}-10+x+4\sqrt{x}+3-3x-4\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)
\(P=\frac{-x-3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\)
để P > -2
\(\Rightarrow\frac{-\sqrt{x}-2}{\sqrt{x}-5}>-2\) đoạn này đang chưa nghĩ ra
c, \(P=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\in Z\) \(\Rightarrow-\sqrt{x}-2⋮\sqrt{x}-5\)
=> -căn x + 5 - 7 ⋮ căn x - 5
=> -(căn x - 5) - 7 ⋮ căn x - 5
=> 7 ⋮ x - 5 đoạn này dễ
a, Với \(x\ge0;x\ne25\)thì \(P=\frac{\sqrt{x}+2}{5-\sqrt{x}}\) đoạn này đúng rồi
\(P>-2\)\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}>-2\)
\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}+2>0\)
\(\Leftrightarrow\frac{12-\sqrt{x}}{5-\sqrt{x}}>0\)
Xét 2 trường hợp cùng âm, cùng dương hoặc "trong trái ngoài cùng"
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}>12\\0\le\sqrt{x}< 5\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>144\\0\le x< 25\end{cases}}\)
Làm luôn cho đầy đủ =)
A,tìm số tự nhiên n có 2 chữ số để 3n+1 và 4n+1 là số chính phương
B,tìm số tự nhiên n có 2 chữ số để n+4 và 2n là số chính phương
A,tìm số tự nhiên n có 2 chữ số để 3n+1 và 4n+1 là số chính phương
B,tìm số tự nhiên n có 2 chữ số để n+4 và 2n là số chính phương