Xác định hàm số f(x) biết:
\(f\left(\frac{x-1}{x}\right)+2\cdot f\left(\frac{1}{x}\right)=x\left(x\ne0,1\right)\)
GIẢI GIÚP VỚI!!! Mai là thi HK rùi!!!!!!!!
Cho hàm số \(f\left(x\right)\) xác định với mọi \(x\inℝ\).Biết rằng với mọi x ta đều có:\(f\left(x\right)+2\cdot f\left(\frac{1}{x}\right)=x^2\).Tính\(f\left(\frac{1}{3}\right)\)
Xét hàm số f(x) thỏa mãn f(x)+2f(1/x)=x^2. với mọi x thuộc R.
Đúng với x = 2 . => f(2) + 2f(1/2) = 2^2 = 4
=> f(2) + 2f(1/2) = 4 ( 1 )
Đúng với x = 1/2 => f(1/2) + 2f(2) = (1/2)^2 = 1/4.
=> 2f(2) + f (1/2) = 1/4.=> 4f(2) + 2f(1/2) = 2/4 ( 2 )
Lấy (2) trừ (1) ta đc : 3f(2) = 2/4 - 4 = -7/2
=> f(2) = -7/2: 3= -7/6
Xác định hàm số f(x) biết:
\(f\left(\frac{3x+1}{x+2}\right)=\frac{x+1}{x-1}\left(x\ne1\right)\)
Hướng dẫn: Đặt: \(X=\frac{3x+1}{x+2}\)
=> \(X=\frac{3x+1}{x+2}=\frac{3x+6-5}{x+2}=3-\frac{5}{x+2}\)
=> \(\frac{5}{x+2}=3-X\Rightarrow x=\frac{5}{3-X}-2\)
=> \(f\left(X\right)=\frac{\frac{5}{3-X}-2}{\frac{5}{3-X}-1}=\frac{2X-1}{X+2}\)
Vậy hàm số f(x) có dạng: \(f\left(x\right)=\frac{2x-1}{x+2}\)
p/s: chú ý điều kiện
Cho hàm số f(x) xác định với mọi x thuộc R. Biết rằng với mọi x, ta đều có:\(f\left(x\right)+2f\left(\frac{1}{x}\right)=x^2.\)Tính \(f\left(\frac{1}{3}\right)\)
\(f\left(\frac{1}{3}\right)+2f\left(\frac{1}{\frac{1}{3}}\right)=\left(\frac{1}{3}\right)^2\Rightarrow f\left(\frac{1}{3}\right)+2f\left(3\right)=\frac{1}{9}\)(1)
\(f\left(3\right)+2f\left(\frac{1}{3}\right)=3^2\Rightarrow2f\left(3\right)+4f\left(\frac{1}{3}\right)=18\)(2)
Từ (1) và (2) \(\Rightarrow2f\left(3\right)+4f\left(\frac{1}{3}\right)-f\left(\frac{1}{3}\right)-2f\left(3\right)=18-\frac{1}{9}\)
\(\Rightarrow3f\left(\frac{1}{3}\right)=\frac{161}{9}\Rightarrow f\left(\frac{1}{3}\right)=\frac{161}{27}\)
Cho hàm số \(f\left(x\right)\)xác định với \(\forall x\ne0\)thỏa mãn:
a) \(f\left(1\right)=1\)
b) \(f\left(\frac{1}{x}\right)=\frac{1}{x^2}\cdot f\left(x\right)\)
c) \(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)với \(\forall x_1;x_2\ne0\)và \(x_1+x_2\ne0\)
Chứng minh rằng: \(f\left(\frac{5}{7}\right)=\frac{5}{7}\)
Xét tính liên tục của mỗi hàm số sau trên tập xác định của hàm số đó:
a) \(f\left( x \right) = {x^2} + \sin x;\)
b) \(g\left( x \right) = {x^4} - {x^2} + \frac{6}{{x - 1}};\)
c) \(h\left( x \right) = \frac{{2x}}{{x - 3}} + \frac{{x - 1}}{{x + 4}}.\)
a) Hàm số \(f\left( x \right) = {x^2} + \sin x\) có tập xác định là \(\mathbb{R}\).
Hàm số x2 và sinx liên tục trên \(\mathbb{R}\) nên hàm số \(f\left( x \right) = {x^2} + \sin x\) liên tục trên \(\mathbb{R}\).
b) Hàm số \(g\left( x \right) = {x^4} - {x^2} + \frac{6}{{x - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}.\)
Hàm số \({x^4} - {x^2}\) liên tục trên toàn bộ tập xác định
Hàm số \(\frac{6}{{x - 1}}\) liên tục trên các khoảng \(\left( {-\infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)
Vậy hàm số đã cho liên tục trên các khoảng \(\left( {-\infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)
c) Hàm số \(h\left( x \right) = \frac{{2x}}{{x - 3}} + \frac{{x - 1}}{{x + 4}}\) có tập xác định \(D = \mathbb{R}\backslash \left\{ {-4;3} \right\}.\)
Hàm số \(\frac{{2x}}{{x - 3}}\) liên tục trên các khoảng \(\left( {-\infty ;3} \right)\) và \(\left( {3; + \infty } \right).\)
Hàm \(\frac{{x - 1}}{{x + 4}}\) liên tục trên các khoảng \(\left( {-\infty ;-4} \right)\) và \(\left( {-4; + \infty } \right).\)
Vậy hàm số đã cho liên tục trên các khoảng \(\left( {-\infty ;-4} \right)\), \(\left( {-4;3} \right)\), \(\left( {3; + \infty } \right).\)
Cho hàm số f(x) xác định với mọi x thuộc i. Biết rằng với mọi x, ta đều có:
\(f\left(x\right)+3f\left(\frac{1}{x}\right)=x^2\). Tính f(2)
Cho hàm số f(x)\(=\frac{x}{2^x}\).Tìm \(x\inℕ^∗\)biết \(f\left(1\right)+f\left(2\right)+f\left(3\right)+...+f\left(x\right)=\frac{2^{x+1}-x}{2^x}-\frac{1}{512}\)
Cho hàm số \(f\left(x\right)\)xác định với mọi giá trị của x. Biết rằng với mọi giá trị của x ta đều có \(f\left(x\right)+3.f\left(\frac{1}{x}\right)=x^2\). Tính giá trị \(f\left(2\right)\)
vậy f(1/2)+3.f(2)=1/4 hay 3f(1/2)+9.f(2)=3/4
và f(2)+3.f(1/2)=4
trừ vế theo vế ta đc
8.f(2)=-13/4
suy ra f(2)=-13/32
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
tìm tập xác định của hàm số :
f(x) = \(\frac{x^2+1}{\left(x-1\right)\sqrt{x^3+2x^2+3x}}\)
f(x) = \(\frac{\sqrt{x-2}}{\left|x^2-3x+2\right|+\left|x^2-1\right|}\)
a) \(D=(0;+\infty)\backslash\left\{1\right\}\)
b) \(D=[2;+\infty)\)