\(\text{Cho }\text{a,b}\ge0\text{ thỏa }x^2+4y=8.\text{Tìm Min}:\)
\(\text{A=}x+y+\frac{10}{x+y}\)
\(\)\(Cho\text{ }x,y\in R\text{ }thỏa\text{ }x^2+y^2=4.\text{Tìm Min}\)
\(A=\frac{xy}{x+y+1}\)
\(A=\frac{xy}{x+y+2}\)
Bài 1: Tính
A=\(\sqrt{5-2\text{√}6}+\sqrt{5+2\text{√}6}\)
B= \(\left(\sqrt{10}+\sqrt{6}\right)\sqrt{8-2\text{√}15}\)
C=\(\sqrt{4+\text{√}7}+\sqrt{4-\text{√}7}\)
D=\(\left(3+\text{√}5\right)\left(\text{√}10-\text{√}2\right)\sqrt{3-\text{√}5}\)
Bài 2: Phân tích thành nhân tử
a, ab+ba+√a+1; a>=0
b, x-2\(\sqrt{xy}\)+y \(\left(x\ge0;y\ge0\right)\)
c, \(\sqrt{xy}+2\text{√}x-3\text{√}y-6\)\(\left(x\ge0;y\ge0\right)\)
Bài 3: Rút gọn
M= \(\left(\frac{1}{\text{√}x-1}-\frac{1}{\text{√}x}\right)\div\left(\frac{\text{√}x+1}{\text{√}x-2}-\frac{\text{√}x+2}{\text{√}x-1}\right)\)
a, Rút gọn M
b, Tính giá trị của M khi x=2
c, Tìm x để M>0
Bài 1:
\(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2+3+2\sqrt{2.3}}\)
\(=\sqrt{(\sqrt{2}-\sqrt{3})^2}+\sqrt{\sqrt{2}+\sqrt{3})^2}\)
\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
\(B=(\sqrt{10}+\sqrt{6})\sqrt{8-2\sqrt{15}}\)
\(=(\sqrt{10}+\sqrt{6}).\sqrt{3+5-2\sqrt{3.5}}\)
\(=(\sqrt{10}+\sqrt{6})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=\sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=\sqrt{2}(5-3)=2\sqrt{2}\)
\(C=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
\(C^2=8+2\sqrt{(4+\sqrt{7})(4-\sqrt{7})}=8+2\sqrt{4^2-7}=8+2.3=14\)
\(\Rightarrow C=\sqrt{14}\)
\(D=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{2}\sqrt{3-\sqrt{5}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{6-2\sqrt{5}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{5+1-2\sqrt{5.1}}\)
\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{(\sqrt{5}-1)^2}\)
\(=(3+\sqrt{5})(\sqrt{5}-1)^2=(3+\sqrt{5})(6-2\sqrt{5})=2(3+\sqrt{5})(3-\sqrt{5})=2(3^2-5)=8\)
Bài 2:
a) Bạn xem lại đề.
b) \(x-2\sqrt{xy}+y=(\sqrt{x})^2-2\sqrt{x}.\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2\)
c)
\(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=(\sqrt{x}.\sqrt{y}+2\sqrt{x})-(3\sqrt{y}+6)\)
\(=\sqrt{x}(\sqrt{y}+2)-3(\sqrt{y}+2)=(\sqrt{x}-3)(\sqrt{y}+2)\)
Bài 3:
a) ĐKXĐ:\(x>0; x\neq 1; x\neq 4\)
\(M=\frac{\sqrt{x}-(\sqrt{x}-1)}{(\sqrt{x}-1)\sqrt{x}}:\frac{(\sqrt{x}+1)(\sqrt{x}-1)-(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}-1)}\)
\(=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{(x-1)-(x-4)}{(\sqrt{x}-2)(\sqrt{x}-1)}=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{3}{(\sqrt{x}-2)(\sqrt{x}-1)}\)
\(\frac{1}{\sqrt{x}(\sqrt{x}-1)}.\frac{(\sqrt{x}-2)(\sqrt{x}-1)}{3}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)
b)
Khi $x=2$ \(M=\frac{\sqrt{2}-2}{3\sqrt{2}}=\frac{1-\sqrt{2}}{3}\)
c)
Để \(M>0\leftrightarrow \frac{\sqrt{x}-2}{3\sqrt{x}}>0\leftrightarrow \sqrt{x}-2>0\leftrightarrow x>4\)
Kết hợp với ĐKXĐ suy ra $x>4$
Cho x,y,z là các số thực dương thỏa mãn x+y+z=1
\(\text{Tìm Min }\text{của}\text{ }P=\frac{x+yz}{y+z}+\frac{y+zx}{z+x}+\frac{z+xy}{x+y}\)
\(P=\frac{x\left(x+y+z\right)+yz}{y+z}+\frac{y\left(x+y+z\right)+zx}{z+x}+\frac{z\left(x+y+z\right)+xy}{x+y}\)
\(P=\frac{\left(x+y\right)\left(x+z\right)}{y+z}+\frac{\left(x+y\right)\left(y+z\right)}{z+x}+\frac{\left(x+z\right)\left(y+z\right)}{x+y}\)
\(P\ge\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=2\left(x+y+z\right)=2\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
\(Cho\text{ }x,y,z\text{ }\in R\text{ thỏa}\text{ }xyz=1.\text{Tìm Min:}\)
\(P=\left(\left|xy\right|+\left|yz\right|+\left|zx\right|\right)\left[15\sqrt{x^2+y^2+z^2}-7\left(x+y-z\right)\right]+1\)
cho x,y thỏa man \(\sqrt{\text{x}+2}-y^3=\sqrt{y+2}-\text{x}^3\)
Tìm giá trị nhỏ nhất của B=\(\text{x}^2+2\text{x}y-2y^2+2y+10\)
Ta có \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\)
\(\Leftrightarrow\sqrt{x+2}+x^3=\sqrt{y+2}+y^3\)
Đặt \(f\left(x\right)=\sqrt{x+2}+x^3\). Ta chứng minh \(f\left(x\right)\) là hàm số đồng biến với \(x\ge-2\)
Giả sử \(f\left(a\right)>f\left(b\right)\) với \(a,b\ge-2\)
\(\Rightarrow\sqrt{a+2}+a^3>\sqrt{b+2}+b^3\)
\(\Leftrightarrow\sqrt{a+2}-\sqrt{b+2}+a^3-b^3>0\)
\(\Leftrightarrow\dfrac{a-b}{\sqrt{a+2}+\sqrt{b+2}}+\left(a-b\right)\left(a^2+ab+b^2\right)>0\)
\(\Leftrightarrow\left(a-b\right)\left(\dfrac{1}{\sqrt{a+2}+\sqrt{b+2}}+a^2-ab+b^2\right)>0\) (*)
Dễ thấy \(\dfrac{1}{\sqrt{a+2}+\sqrt{b+2}}+a^2+ab+b^2>0\) với mọi \(a,b\ge-2\)
Do đó từ (*) suy ra \(a>b\).
Vậy ta có \(f\left(a\right)>f\left(b\right)\Rightarrow a>b\). Do đó \(f\) là hàm số đồng biến.
Theo trên, ta có \(f\left(x\right)=f\left(y\right)\Rightarrow x=y\)
Thay vào biểu thức B, ta có \(B=x^2+2x+10\)
\(B=\left(x+1\right)^2+9\) \(\ge9\).
Dấu "=" xảy ra \(\Leftrightarrow x=-1\) (nhận) \(\Rightarrow y=-1\)
Vậy GTNN của B là 9, xảy ra khi \(\left(x;y\right)=\left(-1;-1\right)\)
Ai giải giúp mấy bài toán vs
Bài 1:
A=\(\sqrt{\frac{1}{\text{√}2+1}-\frac{\text{√}8-\text{√}10}{2-\text{√}5}}\)
B=\(\frac{5\text{√}5}{\text{√}5+2}+\frac{\text{√}5}{\text{√}5-1}-\frac{3\text{√}5}{3+\text{√}5}\)
Bài 2 rút gọn biểu thức
A=\(\left(\frac{x+\sqrt[]{xy}}{\text{√}x+\text{√}y}-2\right):\frac{1}{\text{√}x+2}\) với x :y >0
B=\(\left(\frac{a}{a-2\text{√}a}+\frac{a}{\text{√}a-2}\right):\frac{\text{√}a+1}{a-4\text{√}a+4}\)
Bài 3 cho biểu thức
P=\(\left(\frac{x-2}{x+2\text{√}x}+\frac{1}{\text{√}x+2}\right)\frac{\text{√}x+1}{\text{√}x-1}\)
a)Rút gọn P
b)tìm x để P=\(\text{√}x+\frac{5}{2}\)
bài 4 rút gọn biểu thức
A=\(\frac{1}{x+\text{√}x}+\frac{2\text{√}x}{x-1}-\frac{1}{x-\text{√}x}\)
B=\(\left(\frac{x}{x+3\text{√}x}+\frac{1}{\text{√}x+3}\right):\left(1-\frac{2}{\text{√}x}+\frac{6}{x+3\text{√}x}\right)\)
Bài 5
A=\(\left(\frac{2}{\text{√}x-3}-\frac{1}{\text{√}x+3}-\frac{x}{\text{√}x\left(x-9\right)}\right):\text{(√}x+3-\frac{x}{\text{√}x-3}\)
a)rút gọn A
b)tìm gtri x để A= -1/4
AI GIẢI GIÙM MÌNH ĐI MÌNH TẠ ƠN
\(\text{Cho x,y}\in R\text{ thỏa mãn }x^2+y^2=4.\text{Tìm Max}\)
\(A=\frac{xy}{x+y+2}\)
Lời giải:
Đặt $xy=a; x+y=b$ thì ta có: \(\left\{\begin{matrix} b^2-2a=4\\ b^2\geq 4a\end{matrix}\right.\)
$A=\frac{xy}{x+y+2}=\frac{a}{b+2}=\frac{b^2-4}{2(b+2)}=\frac{b-2}{2}$
Từ $b^2\geq 4a$. Thay $4a=2(b^2-4)$ có:
$b^2\geq 2(b^2-4)$
$\Leftrightarrow b^2\leq 8\Rightarrow b\leq 2\sqrt{2}$
Do đó: $A=\frac{b-2}{2}\leq \frac{2\sqrt{2}-2}{2}=\sqrt{2}-1$
Vậy $A_{\max}=\sqrt{2}-1$
\(\text{Cho x,y,z }\in R\text{ thỏa mãn điều kiện }xyz=1\text{.Tìm Min:}\)
\(P=\left(\left|xy\right|+\left|yz\right|\left|zx\right|\right).\left[15\sqrt{x^2+y^2+z^2}-7\left(x+y-z\right)\right]+1\)
\(\left|xy\right|+\left|yz\right|+\left|zx\right|\)
\(\text{Cho x,y thuộc R thỏa mãn }x^2+y^2=4.\text{Tìm Max:} \)
\(A=\frac{xy}{x+y+2}\)