Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Phương Oanh
Xem chi tiết
Lê Tài Bảo Châu
22 tháng 10 2019 lúc 16:32

Bài 1:

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+1\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3-x+y\right)\)

\(=2\left(x-y\right)\left(2x+3+y\right)\)

Bài 2:

\(P=\left(3x-1\right)^2+2\left(3x-1\right)\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(3x-1-x-1\right)^2\)

\(=\left(2x-2\right)^2\)(1)

b) Thay \(x=\frac{9}{4}\)vào (1) ta được: 

\(\left(2.\frac{9}{4}-2\right)^2\)

\(=\frac{25}{4}\)

Vậy giá trị của P \(=\frac{25}{4}\)khi \(x=\frac{9}{4}\)

Bài 3:

Ta có: \(M=x^2+4x+5\)

\(=\left(x+2\right)^2+1\)

Vì \(\left(x+2\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+2\right)^2+1\ge0+1;\forall x\)

Hay \(M\ge1;\forall x\)

Dấu"="xảy ra \(\Leftrightarrow\left(x+2\right)^2=0\)

                       \(\Leftrightarrow x=-2\)

Vậy \(M_{min}=1\Leftrightarrow x=-2\)

Khách vãng lai đã xóa
Lê Tài Bảo Châu
22 tháng 10 2019 lúc 16:33

Bài 1 : trên là sai nha mình làm lại

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3y-x+y\right)\)

\(=2\left(x-y\right)\left(2x+4y\right)\)

\(=4\left(x-y\right)\left(x+2y\right)\)

Khách vãng lai đã xóa
Châu Anh
Xem chi tiết
Lê Trần Châu Anh
8 tháng 1 2022 lúc 8:41

mk mới lớp 5 nên ko bt

Khách vãng lai đã xóa
Nguyễn Thị Thắm
Xem chi tiết
Nguyễn Huy Tú
23 tháng 4 2021 lúc 13:31

Bài 1 : 

a, \(\left(a-2\right)^2-b^2=\left(a-2-b\right)\left(a-2+b\right)\)

b, \(2a^3-54b^3=2\left(a^3-27b^3\right)=2\left(a-3b\right)\left(a^2+3ab+9b\right)\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
23 tháng 4 2021 lúc 13:40

Bài 2 : tự kết luận nhé, ngại mà lười :( 

a, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

\(\Leftrightarrow\frac{4x-3}{5}-\frac{5x-4}{3}=\frac{6x-2}{7}+3\)

\(\Leftrightarrow\frac{12x-9-25x+20}{15}=\frac{6x-2+21}{7}\)

\(\Leftrightarrow\frac{-13x-29}{15}=\frac{6x+19}{7}\Rightarrow-91x-203=90x+285\)

\(\Leftrightarrow181x=-488\Leftrightarrow x=-\frac{488}{181}\)

b, \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)

\(\Leftrightarrow\frac{4x+8+9\left(2x-1\right)}{12}-\frac{10x-6}{12}=\frac{12x+5}{12}\)

\(\Rightarrow4x+8+18x-9-10x+6=12x+5\)

\(\Leftrightarrow12x+5=12x+5\Leftrightarrow0x=0\)

Vậy phương trình có vô số nghiệm 

c, \(\left|2x-3\right|=4\)

Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=4\Leftrightarrow x=\frac{7}{2}\)

Với \(x< \frac{3}{2}\)pt có dạng : \(2x-3=-4\Leftrightarrow x=-\frac{1}{2}\)

d, \(\left|3x-1\right|-x=2\Leftrightarrow\left|3x-1\right|=x+2\)

Với \(x\ge\frac{1}{3}\)pt có dạng : \(3x-1=x+2\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Với \(x< \frac{1}{3}\)pt có dạng : \(3x-1=-x-2\Leftrightarrow4x=-1\Leftrightarrow x=-\frac{1}{4}\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
23 tháng 4 2021 lúc 13:44

Câu 3 : 

a, \(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)ĐK : \(x\ne\pm2\)

\(=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x^2-4+10-x^2}{\left(x-2\right)\left(x+2\right)}\right)\)

\(=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x-2\right)\left(x+2\right)}{6}=\frac{-6}{6}=-1\)

b, :)) -1 > 0 ( vô lí ) Vậy ko có giá trị x để A > 0 

Khách vãng lai đã xóa
Cấn Ngọc Minh
Xem chi tiết
ad lam
Xem chi tiết
HoàngMiner
3 tháng 4 2018 lúc 22:48

Câu 1:

Ta có phương trình: \(x^2-4x+6=\frac{21}{x^2-4x+10}\)

<=> \(\left(x^2-4x+6\right)\left(x^2-4x+10\right)=21\)

<=> \(\left(x^2-4x+8\right)^2-4=21\)

<=> \(\left(x^2-4x+8\right)^2=25\)

<=> \(x^2-4x+8=\pm5\)

<=> \(\orbr{\begin{cases}x^2-4x+3=0\\x^2-4x+13=0\end{cases}}\)

2 phương trình này bạn bấm máy tính là ra nghiệm nha :) Mình làm hơi tắt :0

Câu 3:

Ta sẽ sử dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức: Với a, b, x, y thuộc R thì \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Dấu "=" xảy ra <=> \(\frac{a}{x}=\frac{b}{y}\)

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức ta có:

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

=> \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)=> đpcm

Câu 4:

Do x > 0 nên ta có: \(x+\frac{1}{x}-2=\left(\sqrt{x}\right)^2-2+\left(\frac{1}{\sqrt{x}}\right)^2=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\ge0\forall x>0\)

=> \(x+\frac{1}{x}-2\ge0\Rightarrow x+\frac{1}{x}\ge2\)

=> đpcm

ad lam
4 tháng 4 2018 lúc 21:05

  cảm ơn bạn rất nhiều

ad lam
4 tháng 4 2018 lúc 21:17

bạn có thể làm hết được không bạn]

Cô gái thất thường (Ánh...
Xem chi tiết
batman4019
20 tháng 10 2018 lúc 19:18

chào bê đê

Cô gái thất thường (Ánh...
Xem chi tiết
Khách vãng lai
20 tháng 10 2018 lúc 20:22
Mai đi học à????
Phổ Cát Tường
20 tháng 10 2018 lúc 20:51

Câu 1: =\(\frac{1}{4}x^2-\frac{1x}{2x}+\frac{1}{4x^2}\)

Phổ Cát Tường
20 tháng 10 2018 lúc 21:13

câu 2 dễ mà

Nhok Song Tử
Xem chi tiết
Ánh Ngọc Dương
Xem chi tiết
2611
10 tháng 1 2023 lúc 19:37

Bài `1:`

`a)3x^3+6x^2=3x^2(x+2)`

`b)x^2-y^2-2x+2y=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)`

Bài `2:`

`a)(2x-1)^2-25=0`

`<=>(2x-1-5)(2x-1+5)=0`

`<=>(2x-6)(2x+4)=0`

`<=>[(x=3),(x=-2):}`

`b)Q.(x^2+3x+1)=x^3+2x^2-2x-1`

`<=>Q=[x^3+2x^2-2x-1]/[x^2+3x+1]`

`<=>Q=[x^3-x^2+3x^2-3x+x-1]/[x^2+3x+1]`

`<=>Q=[(x-1)(x^2+3x+1)]/[x^2+3x+1]=x-1`