Câu 1: Phân tích đa thức thành nhân tử
a. \(\frac{1}{4}x^2-64\)
b. \(\frac{1}{27}+x^3\)
c. \(\left(a+b\right)^3-\left(a-b\right)^3\)
Câu 2: Tìm x
a. \(x^2-6x+9=0\)
b. \(50x^2-2=0\)
Câu 3: Tính nhanh
\(73^2-27^2\)
Câu 1: Phân tích đa thức thành nhân tử
\(6x^2-2\left(x-y\right)^2-6y^2\)
Câu 2: Cho biểu thức:
P= \(\left(3x-1\right)^2+2\left(3x-1\right)\left(x+1\right)+\left(x+1\right)^2\)
a) Rút gọn P
b) Tính P khi x= \(\frac{9}{4}\)
Câu 3: Tìm GTNN
M= \(x^2+4x+5\)
Bài 1:
\(6x^2-2\left(x-y\right)^2-6y^2\)
\(=6\left(x-y\right)\left(x+1\right)-2\left(x-y\right)^2\)
\(=2\left(x-y\right)\left(3x+3-x+y\right)\)
\(=2\left(x-y\right)\left(2x+3+y\right)\)
Bài 2:
\(P=\left(3x-1\right)^2+2\left(3x-1\right)\left(x+1\right)+\left(x+1\right)^2\)
\(=\left(3x-1-x-1\right)^2\)
\(=\left(2x-2\right)^2\)(1)
b) Thay \(x=\frac{9}{4}\)vào (1) ta được:
\(\left(2.\frac{9}{4}-2\right)^2\)
\(=\frac{25}{4}\)
Vậy giá trị của P \(=\frac{25}{4}\)khi \(x=\frac{9}{4}\)
Bài 3:
Ta có: \(M=x^2+4x+5\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+2\right)^2+1\ge0+1;\forall x\)
Hay \(M\ge1;\forall x\)
Dấu"="xảy ra \(\Leftrightarrow\left(x+2\right)^2=0\)
\(\Leftrightarrow x=-2\)
Vậy \(M_{min}=1\Leftrightarrow x=-2\)
Bài 1 : trên là sai nha mình làm lại
\(6x^2-2\left(x-y\right)^2-6y^2\)
\(=6\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)
\(=2\left(x-y\right)\left(3x+3y-x+y\right)\)
\(=2\left(x-y\right)\left(2x+4y\right)\)
\(=4\left(x-y\right)\left(x+2y\right)\)
Câu 1: Phân tích đa thức thành nhân tử
a.
\(2022x-2022y+x^2-y^2\)
b.
\(x^3yz-27yz\)
c.
\(x^2-2xy-81+y^2\)
Câu 2: Tìm x, biết:
a,\(4x\left(x+1\right)+\left(3-2x\right)\left(3+2x\right)=15\)
b,\(3x\left(x-20012\right)-x+20012=0\)
Câu 3:
a, Cho đa thức \(\left(x+3\right)\left(x+1\right)-\left(x-2\right)\left(x+2\right)+2\left(3-2x\right)\)
Chứng minh rằng giá trị của đa thức A không phụ thuộc vào giá trị của biến x
b, \(B=\frac{x^2+x-2}{3x^2+6x}\)
Rút gọn B
mk mới lớp 5 nên ko bt
Câu 1. Phân tích các đa thức sau thành nhân tử
a. \(a^2-b^2-4a+4\)
b. \(2a^3-54b^3\)
Câu 2. Giải các phương trình sau.
a,\(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
b. \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)
c, \(|2x-3|=4\)
d, \(|3x-1|-x=2\)
Câu 3. Cho biểu thức. \(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(\left(x-2\right)+\frac{10-x^2}{x+2}\right)\)
a. Rút gọn biểu thức A
b Tìm x để A>0
Bài 1 :
a, \(\left(a-2\right)^2-b^2=\left(a-2-b\right)\left(a-2+b\right)\)
b, \(2a^3-54b^3=2\left(a^3-27b^3\right)=2\left(a-3b\right)\left(a^2+3ab+9b\right)\)
Bài 2 : tự kết luận nhé, ngại mà lười :(
a, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\frac{4x-3}{5}-\frac{5x-4}{3}=\frac{6x-2}{7}+3\)
\(\Leftrightarrow\frac{12x-9-25x+20}{15}=\frac{6x-2+21}{7}\)
\(\Leftrightarrow\frac{-13x-29}{15}=\frac{6x+19}{7}\Rightarrow-91x-203=90x+285\)
\(\Leftrightarrow181x=-488\Leftrightarrow x=-\frac{488}{181}\)
b, \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)
\(\Leftrightarrow\frac{4x+8+9\left(2x-1\right)}{12}-\frac{10x-6}{12}=\frac{12x+5}{12}\)
\(\Rightarrow4x+8+18x-9-10x+6=12x+5\)
\(\Leftrightarrow12x+5=12x+5\Leftrightarrow0x=0\)
Vậy phương trình có vô số nghiệm
c, \(\left|2x-3\right|=4\)
Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=4\Leftrightarrow x=\frac{7}{2}\)
Với \(x< \frac{3}{2}\)pt có dạng : \(2x-3=-4\Leftrightarrow x=-\frac{1}{2}\)
d, \(\left|3x-1\right|-x=2\Leftrightarrow\left|3x-1\right|=x+2\)
Với \(x\ge\frac{1}{3}\)pt có dạng : \(3x-1=x+2\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Với \(x< \frac{1}{3}\)pt có dạng : \(3x-1=-x-2\Leftrightarrow4x=-1\Leftrightarrow x=-\frac{1}{4}\)
Câu 3 :
a, \(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)ĐK : \(x\ne\pm2\)
\(=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x^2-4+10-x^2}{\left(x-2\right)\left(x+2\right)}\right)\)
\(=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x-2\right)\left(x+2\right)}{6}=\frac{-6}{6}=-1\)
b, :)) -1 > 0 ( vô lí ) Vậy ko có giá trị x để A > 0
1. Phân tích đa thức thành nhân tử
a) x(x-y)+3x-3y
b)\(x^2-9y^2\)
c)\(x^2-y^2+4x+4\)
2. Tìm x , biết
a) x(x+1)-x(x-3)=0
b) \(x^2-6x+8=0\)
c) \(2x^2+2x+\frac{1}{2}=0\)
3. Rút gọn rồi tính giá trị của biểu thức
A = \(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(2x+1\right)\left(2x-1\right)+x\)với x = 2020
4 . Phân tích đa thức sau thành nhân tử
(x+1)(x+2)(x+3)(x+4)-24
CÂU 1:GIẢI PHƯƠNG TRÌNH SAU
\(x^2-4x+6=\frac{21}{x^2-4x+10}\)
\(\left(x^2-\frac{25}{4}\right)^2=10x+1\)
CÂ
U 2:PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
\(\left(X^2+4Y^2-20\right)^2-16\left(XY-4\right)^2\)
CÂU 3:CHOA,B,C LÀ 3 SỐ DƯƠNG.C/M RẰNG
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
CÂU 4 VỚI X>0, CHỨNG MINH RẰNG: \(X+\frac{1}{X}\ge2\)
Câu 1:
Ta có phương trình: \(x^2-4x+6=\frac{21}{x^2-4x+10}\)
<=> \(\left(x^2-4x+6\right)\left(x^2-4x+10\right)=21\)
<=> \(\left(x^2-4x+8\right)^2-4=21\)
<=> \(\left(x^2-4x+8\right)^2=25\)
<=> \(x^2-4x+8=\pm5\)
<=> \(\orbr{\begin{cases}x^2-4x+3=0\\x^2-4x+13=0\end{cases}}\)
2 phương trình này bạn bấm máy tính là ra nghiệm nha :) Mình làm hơi tắt :0
Câu 3:
Ta sẽ sử dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức: Với a, b, x, y thuộc R thì \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)
Dấu "=" xảy ra <=> \(\frac{a}{x}=\frac{b}{y}\)
Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức ta có:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
=> \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)=> đpcm
Câu 4:
Do x > 0 nên ta có: \(x+\frac{1}{x}-2=\left(\sqrt{x}\right)^2-2+\left(\frac{1}{\sqrt{x}}\right)^2=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\ge0\forall x>0\)
=> \(x+\frac{1}{x}-2\ge0\Rightarrow x+\frac{1}{x}\ge2\)
=> đpcm
câu 1. Thực hiện phép tính
a) \(\left(x^4-x-14\right):\left(x-2\right)\)
b) \(\left(\frac{1}{2}x-\frac{1}{2x}\right)^2\)
câu 2. phân tích đa thức thành nhân tử
a) \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
b) \(x^3-4x^2-9x+36\)
c) \(3x^2-3y^2-2\left(x-y\right)^2\)
Câu 1 thực hiện phép tính: \(\left(\frac{1}{2}x-\frac{1}{2x}\right)^2\)
câu 2. phân tích đa thức thành nhân tử
a) \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
b) \(3x^2-3y^2-2\left(x-y\right)^2\)
c) \(x^3-4x^2-9x+36\)
cứu mk, mai mk ik hok òi
Câu 1: =\(\frac{1}{4}x^2-\frac{1x}{2x}+\frac{1}{4x^2}\)
Câu 1:Phân tích đa thức thành nhân tử
\(a,x^2+7x+6 \)
\(b,x^4+2008x^2+2007x+2008\)
Câu 2:Giải phương trình sau
\(a,8\left(x+\frac{1}{2}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)+x\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
\(b,x^2-3x+2+|x-1|=0 \)
Giúp mik vs nha mai mik nộp r
bài 1: Phân tích đa thức thành nhân tử
a)\(3x^3+6x^2\)
b)\(x^2-y^2-2x+2y\)
bài 2:
a) tìm x:\(\left(2x-1\right)^2-25=0\)
b) Tìm đa thức Q biết: \(Q.\left(x^2+3x+1\right)=x^3+2x^2-2x-1\)
Gisup mik vs
Cảm ơn
Bài `1:`
`a)3x^3+6x^2=3x^2(x+2)`
`b)x^2-y^2-2x+2y=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)`
Bài `2:`
`a)(2x-1)^2-25=0`
`<=>(2x-1-5)(2x-1+5)=0`
`<=>(2x-6)(2x+4)=0`
`<=>[(x=3),(x=-2):}`
`b)Q.(x^2+3x+1)=x^3+2x^2-2x-1`
`<=>Q=[x^3+2x^2-2x-1]/[x^2+3x+1]`
`<=>Q=[x^3-x^2+3x^2-3x+x-1]/[x^2+3x+1]`
`<=>Q=[(x-1)(x^2+3x+1)]/[x^2+3x+1]=x-1`