Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hằng Nga
Xem chi tiết
Ngân Hoàng Xuân
Xem chi tiết
Lê Minh Đức
17 tháng 2 2016 lúc 21:09

Lấy F thuộc AC sao cho AD = AF. Khi đó tam giác ADF vuông cân ở A ==> DFAˆ=450→DFCˆ=1350
Ta có:

BDEˆ=1800−EDCˆ−ADCˆ=1800−900−ADCˆ=900−ADCˆ
ACDˆ=900−ADCˆ (vì tam giác ADC vuông ở A)

Suy ra ACDˆ=BDEˆ
Mặt khác:

BD = AB - AD
CF = AC - AF
AB = AC, AD = AF

Nên BD = CF.
Xét tam giác BDE và tam giác FCD:

BD = FC
BDEˆ=FCDˆ
EBDˆ=DFCˆ(=1350)

Suy ra ΔBDE = ΔFCD (g.c.g) ==> DE = DC
Mà tam giác EDC vuông ở D.
Suy ra tam giác EDC vuông cân ở D.

Huỳnh Nguyễn Nhật Minh
17 tháng 2 2016 lúc 21:01

toán lớp mấy

Hoàng Xuân Ngân
Xem chi tiết
nguyễn chi
Xem chi tiết
Nguyễn Linh Chi
26 tháng 2 2020 lúc 14:13

Câu hỏi của son tung - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo!

Khách vãng lai đã xóa
nguyen cuc
Xem chi tiết
Dương quốc thế
Xem chi tiết
Anh
19 tháng 5 2018 lúc 18:43

a, ta có : góc CFH=90°; góc HEB=90°(góc nội tiếp chắn 1/2đtròn)

xét tứ giác AEHF có góc A=gócE=góc F=90°

suy ra AEHF là hcn.

b, vì AEHF là hcn suy ra AEHF nội tiếp suy ra góc AFE=AHE( góc nội tiếp chắn cung AE) (1)

ta lại có: góc AHE=ABH(cùng bù với BAH) (2)

từ 1 và 2 suy ra góc AFE=ABH

mà góc CFE+AFE=180°

suy ra góc CFE+ABH=180°

suy ra BEFC nội tiếp

c, gọi I và K lần lượt là tâm đtròn đường kính HB và HC

gọi O là giao điểm AH và EF

vì AEHF là hcn suy ra OF=OH suy ra tam giác FOH cân tại O

suy ra góc OFH=OHF

vì CFH vuông tại F suy ra KC=KF=KH

suy ra tam giác HKF cân tại K

suy ra góc KFH=KHF

mà góc KHF+FHA=90°

suy ra góc KFH+HFO=90°

suy ra EF là tiếp tuyến của đtròn tâm K

tương tự EF là tiếp tuyến đường tròn tâm I

vậy EF là tiếp tuyến chung của hai nửa đường tròn đường kính HB và HC

๖ۣۜNɦσƙ ๖ۣۜTì
5 tháng 6 2019 lúc 8:35

a)

1. Ta có : ÐBEH = 900 ( nội tiếp chắn nửc đường tròn )

=> ÐAEH = 900 (vì là hai góc kề bù). (1)

ÐCFH = 900 ( nội tiếp chắn nửc đường tròn )

=> ÐAFH = 900 (vì là hai góc kề bù).(2)

ÐEAF = 900 ( Vì tam giác  ABC vuông tại A) (3)

Từ (1), (2), (3) => tứ giác AFHE là hình chữ nhật ( vì có ba góc vuông)

b)  Tứ giác AFHE là hình chữ nhật nên nội tiếp được một đường tròn

=>ÐF1=ÐH1 (nội tiếp chắn cung AE) .

Theo giả thiết AH ^BC nên AH là tiếp tuyến chung của hai nửa đường tròn  (O1) và (O2)     

 => ÐB1 = ÐH1 (hai góc nội tiếp cùng chắn cung HE) => ÐB1= ÐF1 => ÐEBC+ÐEFC = ÐAFE + ÐEFC màÐAFE + ÐEFC = 1800 (vì là hai góc kề bù) => ÐEBC+ÐEFC = 1800  mặt khác ÐEBC và ÐEFC là hai góc đối của tứ giác BEFC do đó BEFC là tứ giác nội tiếp.

c)

Tứ giác AFHE là hình chữ nhật => IE = EH => DIEH cân tại I => ÐE1 = ÐH1 .

DO1EH cân tại O1 (vì có O1E vàO1H cùng là bán kính) => ÐE2 = ÐH2.

=> ÐE1 + ÐE2 = ÐH1 + ÐH2 mà ÐH1 + ÐH2 = ÐAHB = 900 => ÐE1 + ÐE2 = ÐO1EF = 900

=> O1E ^EF .

Chứng minh tương tự ta còng có O2F ^ EF. Vậy EF là tiếp tuyến chung của hai nửa đường tròndường kính BH và HC.

a)Ta có góc BEH =90 độ (góc nội tiếp chắn nửa đường tròn)

và góc FHC = 90 độ (góc nội tiếp chắn nửa đường tròn)

Xét tứ giác AFHE , ta có:

góc EAF =90 độ (tam giác ABC vuông tại A)

góc AEH =90 độ (cmt)

góc AFH=90 độ (cmt)

=> tứ giác AFHE là hình chữ nhật (tứ giác có 3 góc vuông)

b)Gọi I là giao điểm của AH và EF

Ta có: AH=EF (hcn AFHE) (1)

mà 2 đường chéo AH và EF cắt nhau tại I (vẽ thêm)

=>I là trung điểm của AH và EF (2)

từ (1) và (2)=> IE=IH=IA=IF

Ta có: góc IHF =góc ACH (phụ với góc HAC)

mà góc IHF = góc IFH (tam giác IHF cân tại I (IH=IF) )

=>góc ACH = góc IFH (cùng = góc IHF)

mà góc IFH= góc AEF (2 góc so le trong của AE song song HF(cùng vuông góc AC))

=>góc AEF =góc ACH=>tứ giác BEFC nội tiếp đường tròn

c)Gọi J là tâm của nửa đường tròn đường kính BH

và K là tâm của nửa đường tròn đường kính HC

Ta có: tam giác KFC cân tại K (KF=KC)

=>góc KFC = góc KCF mà góc KCF=góc IFH (cmt)

=>góc KFC =góc IFH (cùng =góc KCF)

mà góc KFC + góc HFK =90 độ (góc HFC =90 độ)

=>góc IFH + góc HFK =90 độ => góc IFK =90 độ

=>EF là tiếp tuyến của nửa (K) (I thuộc EF) (3)

Ta lại có: tam giác JEH cân tại J (JE=JH)

=> góc JEH =góc JHE

mà góc JHE = góc HCF ( 2 góc so le trong của HE song song CA ( cùng vuông góc AB) )

và góc HCF = góc AEF (cmt)

=>góc JEH= góc AEF

mà góc AEF + góc HEF = 90 độ (góc HEA = 90 độ)

=>góc JEH + góc HEF =90 độ => góc JEF = 90 độ

=>EF là tiếp tuyến của nửa (J) (4)

Từ (3) và (4) => EF là tiếp tuyến chung 2 nửa dường tròn dường kính BH và HC

nguyễn thu thảo
Xem chi tiết
Lê Chí Công
30 tháng 6 2016 lúc 16:16

bn vẽ hình dj,mk lm cho

Toán Hình THCS
Xem chi tiết
Aug.21
5 tháng 6 2019 lúc 8:26

a, Ta có : \(\widehat{HEB}=\widehat{HFC}=1v\)( góc nội tiếp chắn nửa đường tròn )

\(\Rightarrow\widehat{HEA}=\widehat{HFA}=\widehat{EAF}=1v\)

\(\Rightarrow\)Tứ giác AEHF là hình chữ nhật

b, Gọi O và O' lần lượt là trung điểm của HB và HC .

Ta có O là trung tâm đường tròn đường kính HB và O' là tâm dường tròn đường kính HC

\(\Rightarrow\widehat{HEO}=\widehat{EHO}\)( Tam giác EHO cân)

     \(\widehat{FEH}=\widehat{FHE}\) ( Tam giác IHE cân )

\(\Rightarrow\widehat{FEH}+\widehat{HEO}=\widehat{FHE}+\widehat{EHO}=90^0\Rightarrow OE\perp EF\)

Vậy EF là tiếp tuyến của đường tròn (O)

Chứng minh tương tự ta có EF là tiếp tuyến của đường tròn (O')

c, Ta có: \(\widehat{EBC}=\widehat{FAH}\)( góc nhọn có cạnh tương ứng vuông góc)

               \(\widehat{FAH}=\widehat{AFE}\)( Tam giác AIF cân )

\(\Rightarrow\widehat{EBC}=\widehat{AFE}\)mà \(\widehat{AFE}+\widehat{EFC}=2v\)( Kề bù)

\(\Rightarrow\widehat{EBC}+\widehat{EFC}=2v\)

Vậy tứ giác BCFE nội tiếp.

     

๖ۣۜNɦσƙ ๖ۣۜTì
5 tháng 6 2019 lúc 8:17

a. Ta có : ÐBEH = 900 ( nội tiếp chắn nửc đường tròn )

=> ÐAEH = 900 (vì là hai góc kề bù). (1)

ÐCFH = 900 ( nội tiếp chắn nửc đường tròn )

=> ÐAFH = 900 (vì là hai góc kề bù).(2)

ÐEAF = 900 ( Vì tam giác  ABC vuông tại A) (3)

Từ (1), (2), (3) => tứ giác AFHE là hình chữ nhật ( vì có ba góc vuông).

b.Tứ giác AFHE là hình chữ nhật => IE = EH => DIEH cân tại I => ÐE1 = ÐH1 .

DO1EH cân tại O1 (vì có O1E vàO1H cùng là bán kính) => ÐE2 = ÐH2.

=> ÐE1 + ÐE2 = ÐH1 + ÐH2 mà ÐH1 + ÐH2 = ÐAHB = 900 => ÐE1 + ÐE2 = ÐO1EF = 900

=> O1E ^EF .

Chứng minh tương tự ta còng có O2F ^ EF. Vậy EF là tiếp tuyến chung của hai nửa đường tròn  .

c.  Tứ giác AFHE là hình chữ nhật nên nội tiếp được một đường tròn =>ÐF1=ÐH1 (nội tiếp chắn cung AE) . Theo giả thiết AH ^BC nên AH là tiếp tuyến chung của hai nửa đường tròn  (O1) và (O2)     

 => ÐB1 = ÐH1 (hai góc nội tiếp cùng chắn cung HE) => ÐB1= ÐF1 => ÐEBC+ÐEFC = ÐAFE + ÐEFC màÐAFE + ÐEFC = 1800 (vì là hai góc kề bù) => ÐEBC+ÐEFC = 1800  mặt khác ÐEBC và ÐEFC là hai góc đối của tứ giác BEFC do đó BEFC là tứ giác nội tiếp.

Cậu bé đz
Xem chi tiết
Cậu bé đz
23 tháng 3 2018 lúc 21:28

giúp mình với

Pham To Uyen
14 tháng 4 2018 lúc 22:31

Bạn biết câu này rồi đúng ko, bạn giúp mình với mik cũng đang cần gấp câu này cụ thể là câu c