Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sawada Tsunayoshi
Xem chi tiết
Đỗ Lê Tú Linh
8 tháng 12 2015 lúc 21:35

a)Nếu n=2k(kEN)

thì n2+n+1=4k^2+2k+1(ko chia hết cho 2, vì 1 ko chia hết cho 2)

Nếu n=2k+1(kEN)

thì n2+n+1=n(n+1)+1=(2k+1)(2k+1+1)+1=(2k+1)(2k+2)+1=(2k)(2k+2)+2k+2+1=4k^2+4k+2k+2+1=4k^2+6k+3(ko chia hết cho 2 vì 3 ko chia hết cho 2)

Vậy với mọi nEN thì n2+n+1 ko chia hết cho 2

b)n(n+1)(5n+1)=(n2+n)(5n+1)=5n3+n2+5n2+n

Nếu n=2k(kEN )

thì n(n+1)(5n+1)=10k3+2k2+10k2+2k(chia hết cho 2)

Nếu n=2k+1(kEN)

thì n(n+1)(5n+1)=5(2k+1)3+(2k+1)+5(2k+1)2+2k+1=...................................

tương tự, n=3k;3k+1;3k+2

mỏi tay chết đi được, mấy con số còn bay đi lung tung

Nguyễn Khánh Ngoc
Xem chi tiết
dam thi thanh tra
Xem chi tiết
Huỳnh Thị Ngọc Nhung
Xem chi tiết
Thần Đồng Toán
19 tháng 7 2016 lúc 15:34

dễ mà :

a . A = n^2 + n + n = n ( n + 1 ) + 1 

n , n + 1 là hai số tự nhiên liến tiếp => n ( n + 1 ) là số chẵn 

=> n ( n + 1 ) + 1 là số lẻ 

=> A không chia hết cho 2 

b . Ta có: n^2 + n + 2 = n(n+1) + 2. 
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6. 
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8. 
Mà: 2; 4; 8 không chia hết cho 5. 
Nên: n(n+1)+2 không chia hết cho 5. 

Đặng Minh Triều
19 tháng 7 2016 lúc 15:37

a) *khi n là số lẻ =>n2 là số lẻ ; n+1 là số chẳn

=>A=n2+n+1 là số lẽ không chia hết cho 2

*khi n  là số chẳn=> n2 là số chẳn ; n+1 là số lẻ

=>A=n2+n+1 là số lẻ không chia hết cho 2

Vậy A không chia hết cho 2

b)Ta có A=n2+n+1=n.(n+1)+1

Ta thấy: n.(n+1) là tích 2 số tự nhiên liên tiếp nên n.(n+1) là số chẳn:

=>n.(n+1) có thể tận cùng là 0;2;4;6;8

Với n.(n+1)=0;2;6;8 => A=n(n+1)+1 không có tận cùng là 0 hoặc 5 nên không chia hết cho 5

Với n.(n+1)=4

Ta lại có : 4=1.4=4.1=2.2

=>n.(n+1) khác 4

Vậy A không chia hết cho 5

Isolde Moria
19 tháng 7 2016 lúc 15:37
n2 + n + 1 = n(n+1) + 1.

Vì n(n+1) là tích hai số tự nhiên liên tiếp, trong 2 số liên tiếp luôn luôn có 1 số chẵn => n.(n+1) là số chẵn, cộng thêm 1 sẽ là số lẻ => n(n+1) + 1 là số lẻ, không chia hết cho 2          (1)

Ta biết 2 số tự tích của nhiên liên tiếp chỉ có chỉ có thể là 20;2;6

=> n.(n+1) tận cùng là 0, 2, 6

=> n.(n+1) +1 tận cùng là: 1, 3, 7  không chia hết cho 5           (2)

Từ (1) và (2) 

=> đpcm

Nguyễn Thị Như Tâm
Xem chi tiết
yasuox6
Xem chi tiết
Phạm Lê Thiên Triệu
31 tháng 10 2018 lúc 11:02

a)tr hp 1 : n : số lẻ

n2 : số lẻ

n2+n : số chẵn

n2+n+1 : số lẻ

tr hp 2 : n : số chẵn

n2 : số chẵn

n2+n : số chẵn

n2+n+1 : số lẻ

=> ko chia hết cho 2

Tuyết Ngọc
Xem chi tiết
A Na Ki
Xem chi tiết
Tuấn
6 tháng 11 2015 lúc 13:03

a)
giả sử Achia hết cho 2 =>n2+n+1 chia hết cho 2 =>n(n+1)+1 chia hết cho 2
mà :n(n+1) chia hết cho 2 =>1 chia hết cho 2(vô lí ) =>dpcm
b)
bạn thêm bớt tách sẽ đc n=5k+3. thay vào vô lí =>dpcm nha

Trương Lê Yến Nhi
Xem chi tiết
Phan Bá Cường phiên bản...
5 tháng 10 2015 lúc 21:13

a) Ta chia ra 2 trường hợp

TH1 : n là số chẵn

=>n^2 sẻ là số lẻ

Do n và n^2 đều là số lẻ, mà số lẻ + số lẻ sẻ có kết quả là số lẻ

=>n^2 +n là số chẵn 

Ta có số chẵn + số lẻ = số lẻ

=> n^2 + n+1 là số lẻ

Do số lẻ ko chia hết cho 2 nên n^2+n+1 ko chia hết cho 2

TH1 ko chia hết cho 2 

TH2: n là số chẵn 

=>n^2 là số chẵn 

Do n là số chẵn mà chẵn + chẵn = chẵn

=> n^2 + n là số chẵn 

Do số chẵn + lẻ = lẻ

=> n^2 +1 là số lẻ nên ko chia hết cho 2

Vậy n^2 + n + 1 ko chia hết cho 2

câu b tượng  tự