Hiệu các bình phương của hai số tự nhiên lẻ liên tiếp là 48. Tìm hai số đó
Tìm 2 số tự nhiên lẻ liên tiếp có hiệu hai bình phương của 2 số đó là 200
Gọi 2 số tự nhiên lẻ đó làn lượt là a và a + 2
Ta có: ( a + 2 )2 - a2 = 200
a2 + 4a + 4 - a2 = 200
4a = 196
a = 49
a + 2 = 51
Vậy 2 số tự nhiên lẻ cần tìm là 49 và 51
gọi 2 số lẻ liên tiếp cần tìm là \(2k-1\)và \(2k+1\).
Vì 2k+1 > 2k-1 nên ta có \(\left(2k+1\right)^2-\left(2k-1\right)^2=200\)
\(\Leftrightarrow4k^2+4k+1-\left(4k^2-4k+1\right)=200\)
\(\Leftrightarrow8k=200\)\(\Leftrightarrow k=\frac{200}{8}=25\)
Thay k=25 vào 2k-1 và 2k+1 ta được 2 số cần tìm là 49 và 51.
hiệu các bình phương của hai số tự nhiên lẻ liên tiếp =40. Tìm 2 số ấy
9 va 11 câu này rất dễ bạn chỉ cần áp dụng hằng đẳng thức \(^{x^2-y^2=\left(x-y\right)\left(x+y\right)}\)là được
Bài 4 :
a) Tìm hai số tự nhiên chẵn liên tiếp biết hiệu các bình phương của 2 số ấy là 68
b) Tìm hai số tự nhiên lẻ liên tiếp biết tổng các bình phương của 2 số ấy là 2594
c) Tìm tất cả số tự nhiên n thỏa mãn \(n^2+6n+12\) là số chính phương
gọi 2 số đó là a; a + 2 (a thuộc N; a chẵn)
có a^2 - (a + 2)^2 = 68
=> a^2 - a^2 - 4a - 4 = 68
=> -4a - 4 = 68
=> -4a = 72
=> a = 18
=> a + 2 = 20
Hiệu các bình phương của hai số tự nhiên chẵn liên tiếp là 44. Tìm hai số đó
Gọi 2 số tự nhiên chẵn liên tiếp đó là 2a và 2a + 2 với \(a\in N\)
Theo bài ra ta có :
\(\left(2a+2\right)^2-\left(2a\right)^2=44\)
\(\Rightarrow4a^2+8a+4-4a^2=44\)
\(\Rightarrow8a=40\)
\(\Rightarrow a=5\)
Vậy 2 số cần tìm là : \(\hept{\begin{cases}2.5=10\\2.5+2=12\end{cases}}\)
1) Tìm tổng của n số lẻ đầu tiên.
2) Chứng minh rằng mỗi số lẻ là hiệu của bình phương hai số tự nhiên liên tiếp.
-Áp dụng viết số 37 dưới dạng hiệu của bình phương hai số lẻ liên tiếp.
NHỚ GIẢI RA NHÉ! MIK CẢM ƠN!
hiệu bình phương của hai số tự nhiên liên tiếp là 15. tìm số tự nhiên bé trong hai số đó?
Gọi 2 số là a và b(a là số bé)
ta có: b2-a2=15
<=>(b+a)(b-a)=15
<=>(a+a+1)(a+1-a)=15(vì b=a+1)
<=>(2a+1)*1=15
=>2a+1=15
<=>2a=14
<=>a=7
Vậy số bé là 7
1. Tính tổng của n số lẻ đầu tiên
2. Chứng minh rằng mỗi số lẻ là hiệu của bình phương hai số tự nhiên liên tiếp. Áp dụng viết số 37 dưới dạng hiệu của bình phương hai số lẻ liên tiếp
tìm hai chữ số tự nhiên liên tiếp, biết rằng hiệu bình phương của hai số đó là 31
Gọi 2 số tự nhiên đó là: a; a-1\(\left(a\inℕ^∗\right)\)
Theo đề bài ta có:
\(a^2-\left(a-1\right)^2=31\)
\(\Leftrightarrow a^2-\left(a^2-2a+1\right)=31\)
\(\Leftrightarrow a^2-a^2+2a-1=31\)
\(\Leftrightarrow2a=31+1\)
\(\Leftrightarrow a=\dfrac{32}{2}=16\Rightarrow a-1=16=16-1=15\)
Vậy hai số đó là: \(15;16\)
Gọi 2 số tự nhiên đó là a, a - 1 (\(a\in N\))
Ta có: \(\left(a+1\right)^2\) \(-a^2\) = 31
=> \(a^2\) + 2a + 1 - a\(^2\) = 31
=> 2a = 30
=> a = \(\dfrac{32}{2}\) = 16 => a - 1 = 16 - 1 = 15
Vậy hai số đó là 16, 15
Gọi hai số tự nhiên đó là a , a - 1 (a N*)
Theo đề, ta có :
Vậy : Hai số đó là 15; 16
chứng minh rằng mỗi số lẻ là hiệu của bình phương hai số tự nhiên liên tiếp
Gọi n; n+1 là hai số tự nhiên liên tiếp
Ta có \(\left(n+1\right)^2-n^2=n^2+2n+1-n^2=2n+1.\)
Nếu n lẻ => 2n chẵn => 2n+1 lẻ
Nếu n chẵn => 2n chẵn => 2n+1 lẻ
=> Hiệu bình phương hai số tự nhiên liên tiếp luôn là 1 số lẻ hay mỗi số lẻ là hiệu bình phương của 2 số tự nhiên liên tiếp
Hãy chứng minh rằng mỗi số lẻ là hiệu của bình phương của hai số tự nhiên liên tiếp
(n+1)2−n2=n2+2n+1−n2=2n+1.Nếu n lẻ => 2n chẵn => 2n+1 lẻNếu n chẵn => 2n chẵn => 2n+1 lẻ=> Hiệu bình phương hai số tự nhiên liên tiếp luôn là 1 số lẻ hay mỗi số lẻ là hiệu bình phương của 2 số tự nhiên liên tiếp Đúng 0