Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Khánh Duy
Xem chi tiết
TrangNhung
Xem chi tiết
Ái Kiều
Xem chi tiết
Hiền Nguyễn
Xem chi tiết
bepro_vn
3 tháng 9 2021 lúc 14:15

Từ gt ta có x^2+y^^2=xy+1

=>P=(x^2+y^2)^2-2x^2y^2-x^2y^2

=(xy+1)2-2x2y2-x2y2

=x2y2+xy+1-3x2y2=-2x2y2+xy+1

=......

Nguyễn Việt Lâm
6 tháng 9 2021 lúc 17:38

\(1=x^2+y^2-xy\ge2xy-xy=xy\Rightarrow xy\le1\)

\(1=x^2+y^2-xy\ge-2xy-xy=-3xy\Rightarrow xy\ge-\dfrac{1}{3}\)

\(\Rightarrow-\dfrac{1}{3}\le xy\le1\)

\(P=\left(x^2+y^2\right)^2-2\left(xy\right)^2-\left(xy\right)^2=\left(xy+1\right)^2-3\left(xy\right)^2=-2\left(xy\right)^2+2xy+1\)

Đặt \(xy=t\in\left[-\dfrac{1}{3};1\right]\)

\(P=f\left(t\right)=-2t^2+2t+1\)

\(f'\left(t\right)=-4t+2=0\Rightarrow t=\dfrac{1}{2}\)

\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)

\(\Rightarrow P_{max}=\dfrac{3}{2}\) ; \(P_{min}=\dfrac{1}{9}\)

Trường Tuệ Lê
Xem chi tiết

a/ giá trị nhỏ nhất của A  là 2

b/ giá trị lớn nhất của B là 51

Khách vãng lai đã xóa
mystic and ma kết
2 tháng 8 2021 lúc 7:43

tớ chỉ có bài tham khảo trên mạng thôi bạn thông cảm

Ta có: x + y = 1
   <=> (x + y)3 = 1
   <=> x3 + y3 + 3xy(x + y) = 1
   <=> x3 + y3 + 3xy = 1 (do x + y = 1)
   <=> x3 + y3 = 1 - 3xy
Áp dụng BĐT Cô - si, ta có:
   xy >= (x+y)24=14(x+y)24=14
<=> -3xy≥−34≥−34
Ta có x3 + y3 = 1 - 3xy ≥1−34=14≥1−34=14
Dấu "=" xảy ra khi x = y = 1212
Vậy GTNN của x3 + y3 là 1414khi x =  y = 12

Khách vãng lai đã xóa

c/  GTNN của C là 5

d/ y = 12 , x = 12 

Khách vãng lai đã xóa
chi nguyễn mai
Xem chi tiết
Lê Quang Dũng
Xem chi tiết
Nguyễn Thị Ngọc Thơ
30 tháng 7 2018 lúc 14:22

a,Ta có: \(2A=4x^2+4xy+2y^2-4x+4y+4\)

\(=4x^2+2x\left(y-2\right)+\left(y-2\right)^2+y^2+8y+16-20\)

\(=\left(2x+y-2\right)^2+\left(y+4\right)^2-20\)

Vì \(\left\{{}\begin{matrix}\left(2x+y-2\right)^2\ge0\\\left(y+4\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow2A\ge-20\Rightarrow A\ge-10\)

Dấu ''='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-4\end{matrix}\right.\)

Vậy ....

Nguyễn Thị Ngọc Thơ
30 tháng 7 2018 lúc 14:36

c,Ta có:\(4C=4x^2+4xy+4y^2-12x-12y\)

\(=4x^2+2.2x\left(y-3\right)+\left(y-3\right)^2-\left(y-3\right)^2+4y^2-12y\)

\(=\left(2x+y-3\right)^2+3\left(y^2-2y+1\right)-12\)

\(=\left(2x+y-3\right)^2+3\left(y-1\right)^2-12\)

Vì \(\left\{{}\begin{matrix}\left(2x+y-3\right)^2\ge0\\3\left(y-1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow4C\ge-12\Rightarrow C\ge-3\)

Dấu ''='' xảy ra \(\Leftrightarrow x=y=1\)

Vậy ...

Nguyễn Thị Ngọc Thơ
30 tháng 7 2018 lúc 14:47

a,Ta có:\(B=x^4-x^3y+y^4-xy^3+x^2y^2-8xy+16+184\)

\(=x\left(x^3-y^3\right)-y\left(x^3-y^3\right)+\left(xy-4\right)^2+184\)

\(=\left(x-y\right)^2\left(x^2+xy+y^2\right)+\left(xy-4\right)^2+184\)

\(=\left(x-y\right)^2\left[\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3y^2}{4}\right]+\left(xy-4\right)^2+184\)

Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left[\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3y^2}{4}\right]\ge0\\\left(xy-4\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow B\ge184\)

Dấu ''='' xảy ra \(\Leftrightarrow x=y=2\)

Vậy ...

Zero Two
Xem chi tiết
Zero Two
Xem chi tiết