Những câu hỏi liên quan
Phạm Thị Hường
Xem chi tiết
Seu Vuon
23 tháng 2 2015 lúc 21:34

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

Ta có (a +b)2 >=4ab với mọi a,b>0. Dấu = xảy ra <=> a = b

(b+c)2 >=4bc, với mọi b,c >0. Dấu = xảy ra <=> b = c

(c+a)2 >=4ca, với mọi a,b>0. Dấu = xảy ra <=> c = a

=> (a+b)2(b+c)2(c+a)2 >=64a2b2c2 (a,b,c >0)

=> (a+b)(b+c)(c+a) >=8abc => (a+b)(b+c)(c+a)/abc >=8

Dấu = xảy ra <=> a = b = c <=> Tam giác đều

Lemon Candy
Xem chi tiết
BUI THI HOANG DIEP
Xem chi tiết
Bùi Anh Tuấn
5 tháng 11 2019 lúc 19:59

\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(c+b\right)\left(a+c\right)}{abc}=8\)

\(\Leftrightarrow\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}=64\)

Ta có

\(\left(a+b\right)^2\ge4ab;\left(c+b\right)^2\ge4cb;\left(a+c\right)^2\ge4ac\)

\(\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}\ge64\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)=> Đó là tam giác đều

Khách vãng lai đã xóa
BUI THI HOANG DIEP
7 tháng 11 2019 lúc 16:25

Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)

         \(\Rightarrow\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{c}=8\)

        \(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

        \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)

        \(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2+2abc=8abc\)

        \(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2-6abc=0\)

        \(\Rightarrow\left(ab^2-2abc+ac^2\right)+\left(a^2b-2abc+bc^2\right)+\left(a^2c-2abc+b^2c\right)=0\)

        \(\Rightarrow a\left(b^2-2bc+c^2\right)+b\left(a^2-2ac+c^2\right)+c\left(a^2-2ab+b^2\right)=0\)

        \(\Rightarrow a\left(b-c\right)^2+b\left(a-c\right)^2+c\left(a-b\right)^2=0\)(1)

Vì a, b, c là độ dài các cạnh của tam giác nên a, b, c > 0 (2)

Do đó \(\Rightarrow\hept{\begin{cases}a\left(b-c\right)^2\ge0\\b\left(a-c\right)^2\ge0\\c\left(a-b\right)^2\ge0\end{cases}}\)(3)

Từ (1), (2), (3) \(\Rightarrow\left(b-c\right)^2=\left(a-c\right)^2=\left(a-b\right)^2=0\)

                        \(\Rightarrow\left(b-c\right)=\left(a-c\right)=\left(a-b\right)=0\)

                        \(\Rightarrow a=b=c\)

Vậy a, b, c là độ dài ba cạnh của một tam giác đều

Khách vãng lai đã xóa
Nguyễn Tiến Đạt
Xem chi tiết
✰๖ۣۜŠɦαɗøω✰
20 tháng 4 2020 lúc 6:51

Ta có : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\left(3+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)< 10\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}< 7\)

\(\Leftrightarrow\frac{a+c}{b}+\frac{b+a}{c}+\frac{c+b}{a}< 7\)

Không giảm tổng quá .Giả sử a là cạnh lớn nhất .Giả b + c < a => 0 < \(\frac{b+c}{a}\)

\(\Rightarrow\frac{a+c}{b}+\frac{b+a}{c}+\frac{c+b}{a}>\frac{2c+b}{b}+\frac{2b+c}{c}+\frac{b+c}{a}\)( không chắc lắm ) 

\(\frac{2c}{b}+\frac{2b}{c}+\frac{b+c}{a}+2\)

=\(\frac{2\left(b+c\right)^2}{bc}+\frac{b+c}{a}-2>7\left(VL\right)\)

=>b+ c > a => a ; b ; c là 3 cạnh tam giác ( đpcm ) 

Khách vãng lai đã xóa
ANHOI
Xem chi tiết
Hoàng Lê Bảo Ngọc
17 tháng 8 2016 lúc 7:19

Ta có : a+b > c , b+c > a , c+a > b

Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)

Vậy ta có đpcm

Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)

đức minh trần
Xem chi tiết
Doãn Thị Thu Trang
Xem chi tiết
Trương Quang Thiện
Xem chi tiết
Fan của Doraemon
10 tháng 11 2018 lúc 5:37

Nếu Đặt p là nửa chu vi => p = (a + b + c)/2 => 2p = a + b + c 
=> p - a = (a + b + c)/2 - a 
=> p - a = (b + c + a - 2a)/2 
=> p - a = (b + c - a)/2 
=> 2(p - a) = b + c - a (1) 
Tương tự ta chứng minh được: 
2(p - b) = a + c - b (2) 
2(p - c) = a + b - c (3) 
Từ (1); (2) và (3) => 1/(a + b - c) + 1/(b +c - a) +1/(c +a - b) 
= 1/[ 2(p - c) ] + 1/[ 2(p - a) ] + 1/[ 2(p - b) ] 
=1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] 
Bây giờ ta đã đưa bài toán về chứng minh 
1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c 
Ta có: (x - y)² ≥ 0 
<=> x² - 2xy + y² ≥ 0 
<=> x² - 2xy + y² + 4xy ≥ 4xy 
<=> x² + 2xy + y² ≥ 4xy 
<=> (x + y)² ≥ 4xy 
=> với x + y ≠ 0 và xy ≠ 0 
=> (x + y)²/(x+ y) ≥ 4xy/(x + y) 
=> (x + y) ≥ 4xy/(x + y) 
=> (x + y)/xy ≥ (4xy)/[xy(x + y)] 
=> 1/x + 1/y ≥ 4/(x + y) (*) 
Áp dụng (*) với x = p - a và y = p - b ta được: 
1/(p - a) + 1/(p - b) ≥ 4/(p - a + p - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/(2p - a - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/(a + b + c - a - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/c (4) 
Chứng minh tương tự ta được: 
1/(p - a) + 1/(p - c) ≥ 4/b (5) 
1/(p - b) + 1/(p - c) ≥ 4/a (6) 
Cộng vế với vế của (4);(5) và (6) ta được: 
1/(p - a) + 1/(p - b) + 1/(p - a) + 1/(p - c) + 1/(p - b) + 1/(p - c) ≥ 4/c + 4/b + 4/a 
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4/c + 4/b + 4/a 
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4(1/a + 1/b + 1/c) 
=> 1/(p - a) + 1/(p - b) + 1/(p - c) ≥ 2(1/a + 1/b + 1/c) 
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/2.( 2(1/a + 1/b + 1/c) ) 
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c 
Dấu bằng xảy ra <=> a = b = c. 

Cao Thanh Nga
Xem chi tiết
Nguyễn Thái Anh
Xem chi tiết
Vo Tuan Viet
30 tháng 8 2016 lúc 20:15

Bằng nhau

Đỗ Phúc Thiên
30 tháng 8 2016 lúc 21:59

a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .

liên hoàng
30 tháng 8 2016 lúc 23:12

ta áp dụng (a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)) >=9 

dễ chứng minh bdt phụ này 

rùi từ đây suy ra 3(a-b)(b-c)(c-a) = 0 => a=b=c (1)

mà lên bđt phụ trên thì xảy ra khi a=b=c (1)

từ (1) , (2) , ta suy ra a=b=c hay đpcm 

vì k chặt chẽ lắm nên thông cảm