chứng minh 118^n -101^n -16^n-1 chia hết cho 702
cmr: \(118^n-101^n-16^n-1⋮702\) , n le
Nếu n chẵn thì 118n - 101n - 16n - 1 \(⋮̸\)702 ( vì chẵn trừ chẵn trừ chẵn bằng chẵn, chẵn trừ lẻ bằng lẻ, không chia hết cho 702.
=> 118n - 101n - 16n - 1 \(⋮̸\)702 thì n lẻ
Chứng minh \(118^n-101^n-16^n-1⋮234\)
n phải lẻ và n\(\in\)N nha bn!
phân tích 234 ra thừa số nguyên tố ta đựợc:
234=2.32.13.ta cần chứng minh:
\(A⋮2;A⋮9;A⋮13\) vì ƯCLN(2;9;13)=234
ta lại có:\(\left(118^n-16^n\right)\)\(⋮\)(118-16)=102\(⋮\)2
\(101^n+1⋮\left(101+1\right)=102⋮2\)
\(\Rightarrow\)A=\(\left(118^n-16^n\right)\)-(\(101^n+1\))\(⋮2\) (1)
tương tự: \(118^n-1⋮\left(118-1\right)=117⋮9;13\)
\(101^n+16^n⋮\left(101+16\right)=117⋮9;13\)
\(\Rightarrow\)A=\(\left(118^n-1\right)-\left(101^n+16^n\right)⋮9;13\)(2)
Từ (1) và (2) \(\Rightarrow\)A chia hết cho 2;9;13
Vậy A chia hết cho 234
Chúc các bn học tốt
Chứng minh \(118^n-101^n-16^n-1⋮234\)
a) Cho A = 119 + 118 + 117 +…+11 + 1. Chứng minh rằng A ⋮ 5
b) Chứng minh rằng với mọi số tự nhiên n thì n2 + n + 1 không chia hết cho 4.
\(a,A=\dfrac{\left(119+1\right)\left(119-1+1\right)}{2}=\dfrac{120\cdot119}{2}=60\cdot\dfrac{119}{2}⋮5\\ b,n^2+n+1=n\left(n+1\right)+1\)
Vì \(n\left(n+1\right)\) là tích 2 số tự nhiên lt nên \(n\left(n+1\right)\) chẵn
Do đó \(n\left(n+1\right)+1\) lẻ
Vậy \(n^2+n+1⋮̸4\)
a) chịu
b) n2 + n + 1= n3 + 1(ơ, n=1 đc mà)
chứng minh rằng : với mọi n thuộc N thì 16^n - 15^n-1 chia hết cho 75
chứng minh rằng : với mọi n thuộc N* thì 5^n + 2.3^n-1 chia hết cho 8
Bài 1 :
Chứng minh rằng : a . ( 5n + 7 ) . ( 4n + 6 ) chia hết cho 2 , b . ( 8n + 1 ) . ( 4n + 5 ) không chia hết cho 2 , với n là số tự nhiên .
Bài 2 :
Chứng minh rằng : abab chia hết cho 101 .
Bài 3 :
Chứng minh rằng : ( n + 10 ) . ( n + 15 ) chia hết cho 2 với n là số tự nhiên .
Bài 4 :
Chứng minh rằng với mọi số tự nhiên n thì 30n + 12 chia hết cho 6 nhưng không chia hết cho 8 .
cho 702 số tự nhiên 1,2,3,...,702 chọn n số trong 702 số này sao cho tổng của n số được chọn chia hết cho 2019. Hỏi số n nhỏ nhất có thể là bao nhiêu?số n lớn nhất có thể là bao nhiêucho 702 số tự nhiên 1,2,3,...,702 chọn n số trong 702 số này sao cho tổng của n số được chọn chia hết cho 2019. Hỏi số n nhỏ nhất có thể là bao nhiêu?số n lớn nhất có thể là bao nhiêu
Giải:
Tổng 702 số bằng 24 6753.
vì 246753 chia 2019 bằng 122 dư 435 n lớn nhất là 122.
2019=702+701+616 => n nhỏ nhất là 3.
cho n là số chẵn
chứng minh: \(20^n+16^n-3^n-1\) chia hết cho 323 (hoặc chứng minh hộ mik chia hết cho 19)
giúp mik với mik cảm ơn! (mik cần trước ngày 20/8)
\(323=17.19\)
+) \(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)
\(20^n-1=20^n-1^n⋮\left(20-1\right)=19\)
\(16^n-3^n⋮\left(16+3\right)=19\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮19\)
+) \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)
\(20^n-3^n⋮\left(20-3\right)=17\)
\(16^n-1=16^n-1^n⋮\left(16+1\right)=17\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮17\)
Mà \(\left(17,19\right)=1\)
\(\Rightarrow20^n+16^n-3^n-1⋮\left(17.19\right)=323\)
CHỨNG MINH 20n+16n-3n-1 VỪA CHIA HẾT CHO 17 VỪA CHIA HẾT CHO 19
Phải có \(n\in N\)nữa nha.
\(A=\left(20^n-3^n\right)+\left(16^n-1\right)\)
\(B=20^n-3^n⋮20-3=17\)(n là số tự nhiên bất kì)
\(C=16^n-1^n⋮16+1=17\)(n là số tự nhiên chẵn)
\(\Rightarrow A=B+C⋮17\)(1)
\(A=\left(20^n-1\right)+\left(16^n-3^n\right)\)
\(D=20^n-1^n⋮20-1=19\)(n là số tự nhiên bất kì)
\(E=16^n-3^n⋮16+3=19\)(n là số tự nhiên chẵn)
\(\Rightarrow A=D+E⋮19\)(2)
Từ (1), (2) \(\Rightarrow A⋮17;19\)
Vậy \(20^n+16^n-3^n-1⋮17;19\)
Chúc bạn học tốt.