1X5+1X5=
1X5+1X5=
1x5+6
1x5+2x6+3x7+...+41x45
1+1x5:5=...
1 + 1 x 5 : 5
= 1 + 1 x 5 : 5
= 1 + 1 x 1
= 1 + 1
= 2
1/1x5/5
bang 1 nha ban
duyet nha ban minh duyet lai cho
B=1x5+2x6+...+99x103
1x5+5x9+9x13+...+81x85
giúp tui với
Lời giải:
$12A=1.5.12+5.9.(13-1)+9.13(17-5)+13.17(21-9)+....+77.81(85-73)+81.85(89-77)$
$=60+(5.9.13+9.13.17+13.17.21+...+77.81.85+81.85.89)-(1.5.9+5.9.13+9.13.17+...+73.77.81+77.81.85)$
$=60+81.85.89 - 1.5.9=612780$
A = 1.5 + 5.9 + 9.13 + ... + 81.85
A = \(\dfrac{12}{12}\)(1.5 + 5.9 + 9.13 + 81.85)
A = \(\dfrac{1}{12}\).(1.5.12 + 5.9.12.+ 9.13.12 + ...+ 81.85.12]
A = \(\dfrac{1}{12}\).[1.5.(9 + 3) + 5.9.(13 - 1) + 9.13.(17 - 5) +...+ 81.85.(89 - 77)]
A = \(\dfrac{1}{12}\).[1.5.9 + 1.3.5 + 5.9.13 - 5.9.1 + 9.13.17 - 9.13.5 + ...+ 81.85.89 - 81.85.77]
A = \(\dfrac{1}{12}\).[1.3.5 + 81.85.89]
A = \(\dfrac{1}{12}\).[15 + 612765]
A = \(\dfrac{1}{12}\).612780
A = 51065
1/1x5 + 1/5x10 + 1/10x15 +...+1/2010x2015
Ta có: \(\dfrac{1}{1\cdot5}+\dfrac{1}{5\cdot10}+...+\dfrac{1}{2010\cdot2015}\)
\(=\dfrac{1}{5}+\dfrac{1}{5}\left(\dfrac{5}{5\cdot10}+\dfrac{5}{10\cdot15}+...+\dfrac{5}{2010\cdot2015}\right)\)
\(=\dfrac{1}{5}+\dfrac{1}{5}\left(\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{15}+...+\dfrac{1}{2010}-\dfrac{1}{2015}\right)\)
\(=\dfrac{1}{5}+\dfrac{1}{5}\left(\dfrac{1}{5}-\dfrac{1}{2015}\right)\)
\(=\dfrac{1}{5}+\dfrac{1}{5}\cdot\dfrac{402}{2015}\)
\(=\dfrac{1}{5}\left(1+\dfrac{402}{2015}\right)\)
\(=\dfrac{1}{5}\cdot\dfrac{2417}{2015}=\dfrac{2417}{10075}\)
1+1+1+1+1+1x5=
1+1+1+1+1+1×5= 1+1+1+1+1+5 =10 nha bạn! Với lại lớp 1 chưa học nhân nên cho đây là toán lớp 2