Cho đa thức f(x)=ax\(^2\)+ bx+c với a,b,c là các số thực. Biết rằng f(0): f(1);f(2) có giá trị nguyên. Chứng minh 2a,2b có giá trị nguyên
cho đa thức f(x) = ax2 + bx +c với a,b,c là các số thực .Biết rằng f(0) ; f(1) ; f(2) có giá trị nguyên . Chứng minh rằng 2a, 2b có giá trị nguyên
\(f\left(0\right)=a.0^2+b.0+c=c\) có giá trị nguyên
\(f\left(1\right)=a+b+c\) có giá trị nguyên => a + b có giá trị nguyên
\(f\left(2\right)=4a+2b+c=2a+2\left(a+b\right)+c\)=> 2a có giá trị nguyên
=> 4a có giá trị nguyên
=> 2b có giá trị nguyên.
Cho đa thức f(x) = \(ax^2+bx+c\) với a ,b, c là các số thực. Biết rằng f(0) ; f(1) ; f(2) có giá trị nguyên . Chứng minh rằng 2a , 2b có giá trị nguyên
) f(0) = c; f(0) nguyên => c nguyên (*)
f(1) = a+ b + c ; f(1) nguyên => a+ b + c nguyên (**)
f(2) = 4a + 2b + c ; f(2) nguyên => 4a + 2b + c nguyên (***)
Từ (*)(**)(***) => a + b và 4a + 2b nguyên
4a + 2b = 2a + 2.(a + b) có giá trị nguyên mà 2(a+ b) nguyên do a+ b nguyên
nên 2a nguyên => 4a có giá trị nguyên mà 4a + 2b nguyên do đó 2b có giá trị nguyên
:3
Có \(f\left(0\right);f\left(1\right);f\left(2\right)\)\(\in Z\Rightarrow\hept{\begin{cases}f\left(0\right)=c\in Z\\f\left(1\right)=a+b+c\in z\\f\left(2\right)=4a+2b+c\in z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b\in z\\4a+2b\in z\end{cases}\Rightarrow\hept{\begin{cases}2a+2b\in z\\4a+2b\in z\end{cases}}\Rightarrow2a\in z;}2b\in z\)
\(\RightarrowĐPCM\)
Thay x= 0 =>f(0)= 0+0+c=c luôn thuộc Z ( vì f(0) thuộc Z)
Thay x=1 => f(1)= a+b+c => a+b thuộc Z => 2a+2b thuộc Z (1)
Thay x=2 => f(2) = 4a+2b+c => 4a+2b thuộc Z (2)
từ (1), (2) => 4a+2b - (2a+2b) =2a thuộc Z
mặt khác f(1) +f(2)=6a+4b thuộc Z => 6a+4b -(4a+2b) thuộc Z
=> 2b+2a thuộc Z =>2b thuộc Z
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) , với a, b, c là các số thực. Biết rằng f(0), f(1), f(2) có giá trị nguyên. Chứng minh rằng tổng f(3)+f(4)+f(5) cũng có giá trị nguyên
cho đa thức f(x)=ax^2+bx+c với a,b,c là các số thực. biết f(0),f(1),f(2) có giá trị nguyên. chứng minh 2a,2b có giá trị nguyên
Ta có:
\(f\left(0\right)=c\in Z\)(1)
\(f\left(1\right)=a+b+c\in Z\)(2)
\(f\left(2\right)=4a+2b+c\in Z\)(3)_
Từ (1), (2) => \(a+b\in Z\)=> \(2a+2b\in Z\)(4)
Từ (1), (3)=> 4a+2b\(\in Z\)(5)
Từ (4), (5) => \(\left(4a+2b\right)-\left(2a+2b\right)\in Z\)
=> \(2a\in Z\)=> \(2b\in Z\)
a,Cho đa thức f(x)=ax+b (a khác 0). Biết f(0)=0, chứng minh rằng F(x)=-f(-x)với mọi x
b,Đa thức f(x)=ax^2=bx+c (a khác 0).Biết F(1)=F(-1), chứng minh rằng f(x) với mọi x
Cho đa thức f(x)=ax2 +bx+c với a, b, c là các số thực thoả mãn: c = 2a + 4b thì f(-1) . f(2) ≥ 0
Có \(c=2a+4b\). Ta tính f ( -1 ) và f ( 2 )
\(f\left(-1\right)=a-b+c=a-b+2a+4b=3a+3b=3\left(a+b\right)\)
\(f\left(2\right)=4a+2b+c=4a+2b+2a+4b=6a+6b=6\left(a+b\right)\)
\(\Rightarrow f\left(-1\right).f\left(2\right)=3\left(a+b\right).6\left(a+b\right)=18\left(a+b\right)^2\)
Có \(\left(a+b\right)^2\ge0\forall x\Leftrightarrow18\left(a+b\right)^2\ge0\forall x\left(đpcm\right)\)
Cho đa thức f(x) = ax2 + bx + c vơi a,b,c là các số thực Bt rằng F(0) , F(1) , F(2) có giá trị nguyên
CMR 2a,2b có giá trị nguyên
Cho đa thức f(x)=ax^2 +bx+c với a,b,c là các số thực . biết rằng f(0);f(1);f(2)có giá trị nguyên , chứng minh rằng 2a, 2b có giá trị nguyên
Lời giải:
Có \(f(0),f(1),f(2)\in\mathbb{Z}\Rightarrow \left\{\begin{matrix} f(0)=c\in\mathbb{Z}\\ f(1)=a+b+c\in\mathbb{Z}\\ f(2)=4a+2b+c\in\mathbb{Z}\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} a+b\in\mathbb{Z}\\ 4a+2b\in\mathbb{Z}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2a+2b\in\mathbb{Z}\\ 4a+2b\in\mathbb{Z}\end{matrix}\right.\Rightarrow 2a\in\mathbb{Z}\rightarrow 2b\in\mathbb{Z}\)
Ta có đpcm
Cho đa thức f(x)=ax2+bx+c với a,b,c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên
Chứng minh rằng 2a, 2b có giá trị nguyên
Giả sử f(0), f(1), f(2) có giá trị nguyên là m,n,p. Theo đề bài ta có
\(1\hept{\begin{cases}c=m\left(1\right)\\a+b+c=n\left(2\right)\\4a+2b+c=p\left(3\right)\end{cases}}\)
Ta lấy (3) - 2(2) + (1) vế theo vế ta được
2a = p - 2n + m
=> 2a là số nguyên
Ta lấy 4(2) - (3) - 3(1) vế theo vế ta được
2b = 4n - p - 3m
=> 2b cũng là số nguyên
Cho đa thức f(x)=ax2+bx+c với a,b,c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên
Chứng minh rằng 2a, 2b có giá trị nguyên
*f(0) nguyên suy ra 0+0+c=c nguyên
*Vì c nguyên và f(1)=a+b+c nguyên suy ra a+b nguyên
*Tương tự vs f(2)=4a+2b+c suy ra 2a nguyên (Vì 4a+2b và 2(a+b) đều nguyên)
Vì 2a và 2(a+b) nguyên suy ra 2b nguyên (đpcm)