Chứng minh rằng 10^10+2 chia hết cho 3 không chia hết cho 9
Chứng minh rằng 1010 + 2 chia hết cho 3 , không chia hết cho 9
vì \(10^{10}\)+2=1000...02
(11 số 0)
mà 1+0+0+...+0+2=3 =>\(10^{10}\)+2 chia hết cho3
không chia hết cho 9
a) tổng 10615+8 có chia hết cho 2 và 9 không
b)tổng 10^2010+14 có chia hết cho3 và 2 không
c)hiệu 10^2010-4 có chia hết cho 3 không
d)chứng minh rằng aaa luôn chia hết cho 37
e)chứng minh aaabbb luôn chia hết cho 37
f)chứng tỏ rằng ab(a+b)chia hết cho 2(a;b thuộc N)
m)chứng minh ab+ba luôn chia hết cho 11
n)chứng minh ab-ba luôn chia hết cho 9 với a>b
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
b, B = 102010 + 14
Xét tổng các chữ có trong B là : 1 + 0 x 2010 + 4 = 6 ⋮ 3 ⇒ B ⋮ 3
B = 102010 + 14 = \(\overline{..0}\) + 4 = \(\overline{..4}\) ⋮ 2 vậy B ⋮ 2
chứng minh rằng:
a) 10^2012-1 chia hết cho 3 và 9
b) 10^8+98 chia hết cho 2 và 9
c) 10^8+35 chia hết cho 5 và 9
d)10^2012+2 chia hết cho 3
Chứng minh rằng
a) 10^2012 - 1 chia hết cho 3 và 9
b) 10^8 +98 chia hết cho 2 và 9
c)10^8 +35 chia hết cho 5 và9
d) 10^2012 +2 chia hết cho 3
Chứng minh rằng:
a,n(n+1)(2n+1) chia hết cho 6.
b,10^9+2 chia hết cho 3.
c,10^10-1 chia hết cho 9.
d,10^8-1 chia hết cho 9.
e,10^8+8 chia hết cho 9.
a) - Xét trường hợp chia hết cho 2
+ Vì n và n + 1 là hai số liên tiếp nên n.(n+1).(2n+1) chia hết cho 2.
- Xét trường hợp chia hết cho 3.
+ Nếu n chia hết cho 3 thì n.(n+1).(2n+1) chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.
+ Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.
Vậy n.(n+1).(2n+1) chia hết cho 2.
Mà n.(n+1).(2n+1) chia hết cho 3 và 2 => n.(n+1).(2n+1) chia hết cho 6 (đpcm)
b) 10^9 + 2 = 100.....02.
Tổng các chữ số của số trên là: 1 + 0 + 0 + 0 +... + 0 + 2 = 3 => 10^9+2 chia hết cho 3(đpcm)
c) 10^10 - 1 = 99...99
Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)
d) 10^8 - 1 = 99...9
Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)
E) 10^8 + 8 = 10...08
Tổng các chữ số của số trên là: 1 + 0 + 0 +... + 0 + 8 = 9 => Nó chia hết cho 9 => 10^8 + 8 chia hết cho 9 (đpcm)
Chứng tỏ rằng 10^2-1 chia hết cho 3, chia hết cho 9; 10^10+2 chia hết cho 3 chia hết cho 9
chứng minh rằng:
a) 10 mủ 9 +2 chia hết cho 3
b) ( 10 mủ 10 -1) chia hết cho 9
a) 109 + 2 = 1000000000 + 2
= 100000002 chia hết cho 3 suy ra 1+0+0+0+0+0+0+0+0+2 = 3 chia hết cho 3.
Vậy 109 + 2 chia hết cho 3.
b) 1010 - 1 = 10000000000 - 1 = 9999999999 chia hết cho 9
Vậy 1010 - 1 chia hết cho 9.
Chứng minh rằng
A.10^9+2 chia hết cho 3
B.10^10_1 chia hết cho 9
1.Tổng 102010+8 có chia hết cho 9 không?
2. Chứng minh rằng ab(a+b) chia hết cho 2.
3. Cho A= 963+2493+351+x với x thuộc N. Tìm điều kiện của x để A chia hết cho 9 , A không chia hết cho 9
1 Ta có
10^2010=10000...0000(2010 số 0)+8
=100000...0000(2009 số 0)8
=(1+0+8)=9 mà 9 chi hết cho 9
suy ra 10^2010+8 chia hết cho 9
2.Nếu số a và số b cùng chẵn thì a+b chẵn suy ra ab(a+b) Chia hết cho 2
Nếu hai số cùng lẻ suy ra a+b chẵn suy ra ab(a+b) Chia hết cho 2
Nếu a chẵn ,b lẻ suy ra ab chia hết cho 2 suy ra ab(a+b) chia hết cho 2
Nếu a lẻ ,b chẵn thì ab chia hết cho 2 suy ra ab(a+b) chia hết cho 2
Vậy ab(a+b) chia hết cho 2