Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dương tú anh
Xem chi tiết
Nguyễn Minh Đăng
Xem chi tiết
Ngô Chi Lan
24 tháng 5 2021 lúc 10:34
Gửi bạn....

Bài tập Tất cả

Khách vãng lai đã xóa
Phạm Thành Đông
24 tháng 5 2021 lúc 11:21

\(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{x^4+4x^2+3}\left(ĐKXĐ:x\in R\right)\).

\(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{\left(x^2+3\right)\left(x^2+1\right)}\).

\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\).

\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x^4-x^2+1\right)\left(x^2+1\right)}-\frac{x^4-x^2+1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\).

\(M=\frac{x^4+2+\left(x^2-1\right)\left(x^2+1\right)-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\).

\(M=\frac{x^4+2+x^4-1-x^4+x^2-1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}=\frac{x^4+x^2}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\)

\(M=\frac{x^2\left(x^2+1\right)}{\left(x^2+1\right)\left(x^4-x^2+1\right)}=\frac{x^2}{x^4-x^2+1}\).

Vậy với \(x\in R\)thì \(M=\frac{x^2}{x^4-x^2+1}\).

Khách vãng lai đã xóa
Phạm Thành Đông
24 tháng 5 2021 lúc 11:27

b) \(M=\frac{x^2}{x^4-x^2+1}\left(x\in R\right)\).

\(\Rightarrow\frac{1}{M}=\frac{x^4-x^2+1}{x^2}=x^2-1+\frac{1}{x^2}\).

\(\frac{1}{M}=\left(x^2-2.x^2.\frac{1}{x^2}+\frac{1}{x^2}\right)+2.x^2.\frac{1}{x^2}-1\).

\(\Rightarrow\frac{1}{M}=\left(x-\frac{1}{x}\right)^2+2-1=\left(x-\frac{1}{x}\right)^2+1\).

Ta có:

\(\left(x-\frac{1}{x}\right)^2\ge0\forall x\).

\(\Leftrightarrow\left(1-\frac{1}{x}\right)^2+1\ge1\forall x\).

\(\Leftrightarrow\frac{1}{M}\ge1\forall x\).

\(\Rightarrow M\le1\forall x\).

Dấu bằng xảy ra.

\(\Leftrightarrow x-\frac{1}{x}=0\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\).

Vậy \(maxM=1\Leftrightarrow x=\pm1\).

Khách vãng lai đã xóa
ღHàn Thiên Băng ღ
Xem chi tiết
KAl(SO4)2·12H2O
20 tháng 1 2019 lúc 17:07

a) \(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}+\frac{x^2+3}{x^4+4x^2+3}\)

\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{x^4+3x^2+x^2+3}\)

\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{x^2\left(x^2+3\right)+x^2+3}\)

\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{\left(x^2+3\right)\left(x^2+1\right)}\)

\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\)

\(M=\frac{x^4+2+x^4-1-x^4+x^2-1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\)

\(M=\frac{0+x^4+x^2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\)

\(M=\frac{x^2\left(x^2+1\right)}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\)

\(M=\frac{x^2}{x^4-x^2+1}\)

Nguyễn Minh Phương
Xem chi tiết
êfe
Xem chi tiết
Hoàng Đức Thịnh
Xem chi tiết
Mờ Lem
Xem chi tiết
Kiệt Nguyễn
3 tháng 10 2020 lúc 11:44

\(ĐK:x\ne\pm1;x\ne0;x\ne3\)

Với \(x\ne\pm1;x\ne0;x\ne3\)thì\(M=\frac{x^3+2x^2-x-2}{x^3-2x^2-3x}\left[\frac{\left(x+2\right)^2-x^2}{4x^2-4}-\frac{3}{x^2-x}\right]=\frac{x^2\left(x+2\right)-\left(x+2\right)}{\left(x^3-x\right)-\left(2x^2+2x\right)}\left[\frac{x^2+4x+4-x^2}{4x^2-4}-\frac{3}{x\left(x-1\right)}\right]\)\(=\frac{\left(x-1\right)\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)\left(x-1\right)-2x\left(x+1\right)}\left[\frac{4\left(x+1\right)}{4\left(x+1\right)\left(x-1\right)}-\frac{3}{x\left(x-1\right)}\right]=\frac{\left(x-1\right)\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x^2-3x\right)}\left[\frac{1}{x-1}-\frac{3}{x\left(x-1\right)}\right]\)\(=\frac{\left(x-1\right)\left(x+2\right)}{x\left(x-3\right)}.\frac{x-3}{x\left(x-1\right)}=\frac{x+2}{x^2}\)

M = 3 \(\Leftrightarrow\frac{x+2}{x^2}=3\Leftrightarrow3x^2-x-2=0\Leftrightarrow\left(x-1\right)\left(3x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-2}{3}\end{cases}}\)

Mà \(x\ne1\)(theo điều kiện) nên x =-2/3

Khách vãng lai đã xóa
Tsukino Usagi
Xem chi tiết
Trần Huỳnh Cẩm Hân
30 tháng 11 2016 lúc 21:21

a. 2x

b.\({3x}\over x^2-1\)

Nguyễn Tuấn Anh
Xem chi tiết
Minh Nguyen
3 tháng 2 2020 lúc 21:38

\(ĐKXĐ:x\ne0;x\ne\pm2\)

a) \(M=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(\Leftrightarrow M=\left[\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\)

\(\Leftrightarrow M=\frac{3x^2-6x\left(x+2\right)+3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)

\(\Leftrightarrow M=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

\(\Leftrightarrow M=\frac{-18x\left(x+2\right)}{18x\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow M=-\frac{1}{x-2}\)

\(\Leftrightarrow M=\frac{1}{2-x}\)

b) Để M đạt giá trị lớn nhất

\(\Leftrightarrow2-x\)đạt giá trị nhỏ nhất

\(\Leftrightarrow x\)đạt giá trị lớn nhất

Vậy để M đạt giá trị lớn nhất thì x phải đạt giá trị lớn nhất \(\left(x\inℤ\right)\)

Khách vãng lai đã xóa
Nguyễn Tuấn Anh
5 tháng 2 2020 lúc 9:50

玉明, bạn làm sai rồi. Dấu ngoặc vuông là dấu phần nguyên không phải dấu ngoặc thường

Khách vãng lai đã xóa