\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
giảng cho mik với
rút gọn hộ mik con này với
\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}-\dfrac{5}{\sqrt{3}-2\sqrt{2}}-\dfrac{5}{\sqrt{3}+\sqrt{8}}\)
\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}+\dfrac{5}{2\sqrt{2}-3}-\dfrac{5}{\sqrt{3}+\sqrt{8}}\)
\(=\sqrt{3}+1+\sqrt{3}-1+2\sqrt{2}+3-2\sqrt{2}+3\)
\(=6+2\sqrt{3}\)
\(=\sqrt{3+2\sqrt{2}+1}+\sqrt{3-2\sqrt{2}+1}-\dfrac{5\left(\sqrt{3}+2\sqrt{2}\right)}{\left(\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{5\left(\sqrt{3}-2\sqrt{2}\right)}{\left(\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}\\ =\left|\sqrt[]{3}+1\right|+\left|\sqrt{3}-1\right|-\dfrac{5\left(\sqrt{3}+2\sqrt{2}\right)}{5}-\dfrac{5\left(\sqrt{3}-2\sqrt[]{2}\right)}{5}\\ =\sqrt{3}+1+\sqrt{3}-1-\sqrt{3}-2\sqrt{2}-\sqrt[]{3}+2\sqrt{2}\\ =0\)
a/ \(\frac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
b/ \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
c/ \(\sqrt{2-\sqrt{3}}\left(\sqrt{5}+\sqrt{2}\right)\)
d/ \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
e/ \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
Làm ơn, giúp mik với. Mik đang cần gấp lắm!
b,\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\) \(=\sqrt{8\sqrt{3}}-2\sqrt{50\sqrt{3}}+4\sqrt{8\sqrt{3}}\)
\(=2\sqrt{2\sqrt{3}}-10\sqrt{2\sqrt{3}}+8\sqrt{2\sqrt{3}}\)
\(=0\)
d,\(A=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
\(\sqrt{2}A=\sqrt{2}(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}})\)
\(\sqrt2A=\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)
\(\sqrt2A=\sqrt{(\sqrt5-1)^2}\) \(+\sqrt{(\sqrt5+1)^2}\) \(=\sqrt5-1 +\sqrt5+1=2\sqrt5\)
\(\Rightarrow A=\dfrac{2\sqrt5}{\sqrt2}\) \(=\sqrt{10}\)
a. \(\frac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{5}+1\right)}\)
\(=\frac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\frac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{3\sqrt{5}-3+5-\sqrt{5}}{2\left(\sqrt{5}+1\right)}\)
\(=\frac{2\sqrt{5}+2}{2\left(\sqrt{5}+1\right)}=\frac{2\left(\sqrt{5}+1\right)}{2\left(\sqrt{5}+1\right)}=1\)
a/ \(\dfrac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
b/ \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
c/ \(\sqrt{2-\sqrt{3}}\left(\sqrt{5}+\sqrt{2}\right)\)
d/ \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
e/ \(\dfrac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
Làm ơn, giúp mik với. Mik đang cần gấp lắm!
a: \(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\dfrac{3\sqrt{5}+5-3-\sqrt{5}}{2\left(\sqrt{5}+1\right)}=\dfrac{2\sqrt{5}+2}{2\left(\sqrt{5}+1\right)}=1\)
b: \(=\sqrt{\sqrt{3}}\left(2\sqrt{2}-2\cdot5\sqrt{2}+4\cdot8\sqrt{2}\right)\)
\(=\sqrt{\sqrt{3}}\cdot24\sqrt{2}\)
d: \(=\dfrac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
a)\(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}}\)
b) \(\frac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
c) \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
d) \(\frac{\left(\sqrt{5+2}\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
giúp mik với mik đang cần gấp >< thx!!
cmr các đẳng thức :
1/\(\sqrt[3]{2}+\sqrt[3]{20}-\sqrt[3]{25}=3\sqrt{\sqrt[3]{5}-\sqrt[3]{4}}\)
2/\(\frac{\sqrt[4]{5}+1}{\sqrt[4]{5}-1}=\sqrt[4]{\frac{3+2\sqrt[4]{5}}{3-2\sqrt[4]{5}}}\)
3/\(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
giúp mik vs mik cần gấp lắm
thực hiện phép tính :
G=\(\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)\left(-\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\)
mn ơi giúp mik vs ạ !!
Rút gọn
1, \(3\sqrt{3}.\left(3+2\sqrt{6}-\sqrt{33}\right)\)
2, \(\sqrt{2}.\left(\sqrt{8}-\sqrt{32}+3\sqrt{18}\right)\)
3, \(\left(2\sqrt{28}-3\sqrt{7}+5\sqrt{63}\right).\sqrt{112}\)
4, \(\left(5\sqrt{6}-4\sqrt{10}+7\sqrt{30}\right):\sqrt{2}\)
5, \(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)
6, \(\left(1+\sqrt{3}-\sqrt{2}\right).\left(1+\sqrt{3}+\sqrt{2}\right)\)
7, \(\left(4\sqrt{27}-2\sqrt{48}-5\sqrt{75}\right):2\sqrt{3}\)
Các bạn ơi ! giúp mik với đi !!!
Các bn ơi giải giúp mik câu này với! Mik đang vội, cảm ơn nhìu!!
a)\(\sqrt{8-\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
b) \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)\)
c) \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
d) \(\left(\sqrt{2+1}\right)^3-\left(\sqrt{2-1}\right)^3\)
e) \(\sqrt{6-2\sqrt{\sqrt{2+\sqrt{12+\sqrt{18-\sqrt{128}}}}}}\)
Rút gọn biểu thức
Rút gọn A = \(\sqrt[3]{5\sqrt{2}-7}-\sqrt[3]{5\sqrt{2}+7}\)
Chỉ mik "cách giải "vs
\(\Rightarrow A^3=5\sqrt{2}-7-3\sqrt[3]{5\sqrt{2}-7}^2.\sqrt[3]{5\sqrt{2}+7}+3\sqrt[3]{5\sqrt{2}-7}.\sqrt[3]{5\sqrt{2}+7}^2-5\sqrt{2}-7=-14-3.\sqrt[3]{\left(5\sqrt{2}-7\right)\left(5\sqrt{2}+7\right)}\left[\sqrt[3]{5\sqrt{2}-7}-\sqrt[3]{5\sqrt{2}+7}\right]=-14-3\sqrt[3]{1}.A=-14-3A\)
\(\Rightarrow A^3=-14-3A\Leftrightarrow A^3+3A+14=0\Leftrightarrow\left(A+2\right)\left(A^2-2A+7\right)=0\Leftrightarrow\left[{}\begin{matrix}A=-2\\A^2-2A+7>0\left(loại\right)\end{matrix}\right.\)