(x^2-3x+9)(3-x)=27-x^3
(x^3+x^2y+xy^2+y^3)(x-y)=x^4-y^4
chung minh:
(x+2)(x-2)(x^2+4)=x^4-16
(x^2-xy+y^2)(x+y)=x^3+y^3
(x^2-3x+9)(3-x)=27-x^3
(x^3+x^2y+xy^2+y^3)(x-y)=x^4-y^4
a)
\(VT=\left(x^2-2^2\right)\left(x^2+4\right)\)
\(=\left(x^2-4\right)\left(x^2+4\right)\)
\(=\left(x^2\right)^2-4^2\)
\(=x^4-16\)
\(=VP\)
b)
\(VT=x^3+x^2y-x^2y-xy^2+xy^2+y^3\)
\(=x^3+y^3\)
\(=VP\)
( x + 2 )( x - 2 )( x2 + 4 )
= ( x2 - 4 )( x2 + 4 ) ( xài HĐT a2 - b2 = ( a - b )( a + b ) nhé ^^ )
= x4 - 16 ( đpcm )
( x2 - xy + y2 )( x + y )
= x3 + x2y - x2y - xy2 + xy2 + y3
= x3 + y3 ( đpcm )
3x^2y^2+12x^2y^3+6x^3y^4= ?
8x^3-27=?
x^2-3x+xy-3y=?
x^2+6x+9-y^2=?
giúp mình với mn ơi đang cần gấpppp
CMR giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến
a) y(x^2-y^2)(x^2+y^2)-y(x^4-y^4)
b)(1/3+2x)(4x^2-2/3x+1/9)-(8x^3-1/27)
c)(x-1)^3-(x-1)(x^2+x+1)-3(1-x)x
d)(3x-2y)^2+(3x+2y)^2-18x^2-8y^2+3
e)(-x-3)^3+(x+9)(x^2+27)+2019
cmr gia tri cua bieu thuc khong phu thuoc vao gia tri cua bien
giúp mình nha đang cần gấp
y(x^2-y^2)(x^2+y^2)-y(x^4-y^4)
(1/3+2x)(4x^2-2/3x+1/9)-(8x^3-1/27)
(x-1)^3-(x-1)(x^2+x+1)-3(1-x)x
(3x-2y)^2+(3x+2y)^2-18x^2-8y^2+3
(-x-3)^3+(x+9)(x^2+27)+2019
\(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
\(=0\)
mấy câu kia phá theo hằng đẳng thức rồi thu ngọn
kết quả không chứa biến là được
học tốt
thực hiện phép chia
a (4x^5-8x^3):(-2x^3)
b(9x^3-12x^2 + 3x ) : (-3x)
c (xy^2 + 4x^2y^3 -3x^2y^4):(-1/2x^2y^3)
d[2(x-y)^3-7(y-x)^2 - (y-x)] : (x-y)
e[(x^3 - y) ^5 -2(x-y)^4 + 3(x-y)^2] :[5(x-y)^2]
1)6x^2-12x
2) x^2+2x+1-y^2
3) x+y+z+x^2+xy+xz
4)xy+xz+y^2+yz
5)x^3+x^2+x+1
6)xy+y-2x-2
7)x^3+3x-3x^2-9
8)x^2+2xy+x+2y
9) x^2-y^2-2x-2y
10) 7x^2-7xy-5x=5y
a) 6x2 - 12x
= 6x(x - 2)
b) x2 + 2x + 1 - y2
= (x2 + 2x + 1) - y2
= (x + 1)2 - y2
= (x + 1 - y)(x + 1 + y)
c) x + y + z + x2 + xy + xz
= (x + x2) + (y + xy) + (z + xz)
= x(1 + x) + y(1 + x) + z(1 + x)
= (x + y + z)(x + 1)
d) xy + xz + y2 + yz
= (xy + xz) + (y2 + yz)
= x(y + z) + y(y + z)
= (x + y)(x + z)
e) x3 + x2 + x + 1
= (x3 + x2) + (x + 1)
= x2(x + 1) + (x + 1)
= (x2 + 1)(x + 1)
f) xy + y - 2x - 2
= (xy + y) - (2x + 2)
= y(x + 1) - 2(x + 1)
= (y - 2)(x + 1)
g) x3 + 3x - 3x2 - 9
= (x3 - 3x2) + (3x - 9)
= x2(x - 3) + 3(x - 3)
= (x2 + 3)(x - 3)
h) x2 - y2 - 2x - 2y
= (x2 - y2) - (2x + 2y)
= (x + y)(x - y) - 2(x + y)
= (x + y)(x - y - 2)
i) 7x2 - 7xy - 5x = 5y
mk thấy con này sai sai ý
i) 7x2 - 7xy - 5x + 5y
= (7x2 - 7xy) - (5x - 5y)
= 7x(x - y) - 5(x - y)
= (7x - 5)(x - y)
1 .CMR : (x+y)^3 -(x-y^3) = 2y.(3x^2 + y^2 )
2. tìm x :
a, (x-3)^3 - (x^3 -27) +9.(x+1)^2=18
b, x.(x-4).(x+4)-(x^3-125)=13
Bài 2:
a: \(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+9\left(x+1\right)^2=18\)
\(\Leftrightarrow-9x^2+27x+9x^2+18x+9=18\)
=>45x=9
=>x=1/5
b: \(\Leftrightarrow x^3-16x-x^3+125=13\)
=>-16x=-112
=>x=7
Tìm x,y biết :
1,(x-3)(y-1)=7
2,xy+3x-7y=21
3,xy+3x-2y=11
4,(x+1)(y-1)=-2
5,|x|=2x-6
6,|2y-4|<2
7,x(x+2)<0
8,x(x-y)=5
9,x(x-2)<0
10,(x+2)(3-x)>0
11,(x-2y)(y-1)=5
b2:tìm x,y,z
a) x/3=y/4=z/5 va 2x+3y+5z=86
b) x/3=y/4; y/6=z/8 va 3x-2y-z=13
c) x/2=y'3=z/4 va xy+yz+zx=104
b3:tìm x,y,z
a)x/3=y/7=z/2 va 2x^2 +y^2 +3z^2=316
b)x:y:z=2:5:7 va 3x+2y-z=27
2.
a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)
\(\Rightarrow x=6;y=8;z=10\)
b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)
\(\Rightarrow x=-9;y=-12;z=-16\)
3.
a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
\(\Rightarrow x=12;y=28;z=8\)
b) x : y : z = 2 : 5 : 7
\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'
\(\Rightarrow x=6;y=15;z=21\)
2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)
=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10
b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)
=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16
c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)
Ta có: xy+yz+zx=104
=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104
=> 6k2 + 12k2 + 8k2 = 104
=> k2(6+12+8) = 104
=> 26k2 = 104
=> k2 = 4
=> k = ±2
Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)
3) a, Đặt k=x/3=y/7=z/2
\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
=> k2 = 4 => k = ±2
Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)
b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21
Sửa lại bài 3a
Với k = 2 thì \(\hept{\begin{cases}x=2.3=6\\y=2.7=14\\z=2.2=4\end{cases}}\)
Với k=-2 thì \(\hept{\begin{cases}x=\left(-2\right).3=-6\\y=\left(-2\right).7=-14\\z=\left(-2\right).2=-4\end{cases}}\)