Tính giá trị biểu thức \(\sqrt{3x+\sqrt{6x-1}}-\sqrt{3x-\sqrt{6x-1}}\)với \(x=5+2\sqrt{7}\)
Cho \(x=\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)-\frac{2\sqrt{6}+\sqrt{3}}{\sqrt{8}+1}\)
Tính giá trị biểu thức \(A=x^5-3x^4-3x^3+6x^2-20x+2022\)
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
CHo biểu thức :
A = \(\left(\frac{6x-4}{3\sqrt{3x^3}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Rút gọn biểu thức A
b) Tìm các giá trị nguyên của x đẻ biểu thức A nhận giá trị nguyên
tìm giá trị biểu thức :
M=\(\sqrt{3x+\sqrt{5x-1}}+\sqrt{3x-\sqrt{6x-1}}\)
với\(x=4+\sqrt{10}\)
Với giá trị nào của x biểu thức sau đạt giá trị nhỏ nhất :\(A=1-\sqrt{5-\sqrt{1-6x+9x^2}}+\left(3x-1\right)^2\)
\(A=1-|1-3x|+|3x-1|^2\)
\(=\left(|3x-1|-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow minA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)hoặc \(x=\frac{1}{6}\)
\(A=\left(\frac{6x+4}{3\sqrt{3x^3}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) rút gọn biểu thức A
b) tìm giá trị nguyên của x để A nhận giá trị nguyên
a) Ta có: \(3x+2\sqrt{3x}+4=\left(\sqrt{3x}+1\right)^2+3>0;1+\sqrt{3x}>0,\forall x\ge0\), nên đk để A có nghĩa là
\(\left(\sqrt{3x}\right)^3-8-\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)\ne0;x\ge0\Leftrightarrow\sqrt{3x}\ne2\Leftrightarrow0\le x\ne\frac{4}{3}\)
A=\(\left(\frac{6x+4}{\left(\sqrt{3x}\right)^3-2^3}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+\left(\sqrt{3x}\right)^3}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
\(=\left(\frac{6x+4-\left(\sqrt{3x}-2\right)\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-\sqrt{3x}+1-\sqrt{3x}\right)\)
\(=\left(\frac{3x+4+2\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-2\sqrt{3x}+1\right)\)
\(=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\left(0\le x\ne\frac{4}{3}\right)\)
b) \(A=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}=\frac{\left(\sqrt{3x}-2\right)^2+2\left(\sqrt{3x}-2\right)+1}{\sqrt{3x}-2}=\sqrt{3x}+\frac{1}{\sqrt{3x}-2}\)
Với \(x\ge0\), để A là số nguyên thì \(\sqrt{3x}-2=\pm1\Leftrightarrow\orbr{\begin{cases}\sqrt{3x}=3\\\sqrt{3x}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=9\\3x=1\end{cases}\Leftrightarrow}x=3}\) (vì \(x\in Z;x\ge0\))
Khi đó A=4
Cho x+\(\sqrt{3}=2\)\(.Tính\) giá trị biểu thức H= \(x^5-3x^4-3x^3+6x^2-20x+2024\)ta được
\(\Leftrightarrow x=2-\sqrt{3}\)
Dễ thấy x là nghiệm của PT \(x^2-4x+1\)
\(H=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2019\\ H=\left(x^2-4x+1\right)\left(x^3+x^2+5\right)+2019\\ H=2019\)
Các bạn gải chi tiết giúp mk nhé. Cảm ơn
a) Cho x=\(\frac{\sqrt{4+2\sqrt{3}}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}}-38-2}\). Tính P=\(\left(x^2-x-1\right)^{2016}\)
b) Cho \(x+\sqrt{3}=2\). Tính giá trị của biểu thức; B= \(x^5-3x^4-3x^3+6x^2-20x+2021\)
b) Ta có: \(x+\sqrt{3}=2\Leftrightarrow x-2=-\sqrt{3}\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow x^2-4x+1=0\)
\(B=x^5-3x^4-3x^3+6x^2-20x+2021\)
\(B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2016\)
\(B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2016\)
Thế \(x^2-4x+1=0\)\(\Rightarrow B=2016.\)
tìm ĐKXĐ
1, \(\sqrt{6x+1}\)
2,\(\dfrac{\sqrt{3}-4}{\sqrt{3x-5}}\)
3, \(\sqrt{\dfrac{2\sqrt{15}-\sqrt{59}}{x-7}}\)
4,\(\sqrt{\dfrac{-3x}{1-\sqrt{2}}}\)
5, \(\sqrt{\sqrt{5}-\sqrt{3}x}\)
1.
6x + 1 ≥0
<=>6x≥-1
<=>x≥-1/6
2.
3x - 5 > 0
<=> 3x > 5
<=> x > 5/3
5.
√5 - √3 . x ≥0
<=> √3 . x ≤ √5
<=> x ≤ √5/3 = (√15)/3