chứng tỏ rằng 3^0+3^1+3^2+....+3^11 chia hết cho 40
giải đầy đủ nha
chứng minh
A = 1+3+3^2+3^3+...3^11 chứng tỏ rằng chia hết cho 13
B = 3+4+2^2+2^3+....+2^30 chứng tỏ rằng chia hết cho 11
C = 3^1000-1 chứng tỏ rằng chia hết cho 4
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
Chứng tỏ rằng 3^0+3^1+3^2+3^3+...+3^11 chia hết cho 40
Đặt A=3^0+3^1+3^2+3^3+...+3^11
=>A=(3^0+3^1+3^2+3^3)+(3^4+3^5+3^6+3^7)+(3^8+3^9+3^10+3^11)
=>A=40+3^4(1+3+3^2+3^3)+3^8(1+3+3^2+3^3)
=>A=40+3^4.40+3^8.40
=>A=40(1+3^4+3^8)
=>A chia hết cho 40
Vậy 3^0+3^1+3^2+3^3+...+3^11 chia hết cho 40
Chứng minh rằng : Nếu a + b chia hết cho 11 và a^2+b^2 chia hết cho 11 thì a^3+b^3 chia hết cho 11
Làm đúng , trình bày đầy đủ thì mình Like cho !!!
Bài giải
Theo bài ra, ta có: a+b chia hết cho 11 và a^2+b^2 chia hết cho 11
a^2+b^2 = a.a+b.b chia hết cho 11 => a chia hết cho 11, b chia hết cho 11 => a^3+a^3=a.a.a+b.b.b cũng chia hết cho 11
K CHO MÌNH NHÉ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Chứng minh rằng : Nếu a + b chia hết cho 11 và a^2+b^2 chia hết cho 11 thì a^3+b^3 chia hết cho 11
Làm đúng , trình bày đầy đủ thì mình Like cho !!!
a) Chứng tỏ rằng 3^0 + 3^1 + 3^2 + 3^3 +.....+3^11 chia hết cho 40
b) Tìm n thuộc N* biết 2016n^2 + 2016n+2 chia hết cho n+1
A = 119 + 118 +.....+11 + 1 chứng tỏ rằng A chia hết cho 5
B=2 + 22 + 23+ .......+ 220 chứng tỏ rằng B chia hết cho 5
C = 1+ 3+ 32 + ......+ 311 chứng tỏ rằng C chia hết cho 40
4. chứng tỏ rằng : 3 mũ 0+ 3 mũ 1+ 3 mũ 2+ 3 mũ 3 ..............+ 3 mũ 11 chia hết cho 40
Ta có: 3^0 + 3^1 + 3^2 + 3^3 + ... + 3^11
= ( 3^0 + 3^1 + 3^2 + 3^3 ) + ... + ( 3^8 + 3^9 + 3^10 + 3^11 )
= 40 + ... + 3^8 . ( 3^0 + 3^1 + 3^2 + 3^3 )
= 40 + ... + 3^8 . 40
= 40 . ( 1 + ... + 3^8 ) \(⋮\)40
~ Chúc bạn học giỏi! ~
\(1+3+3^2+............+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(=1.40+3^4.40+3^8.40\)
\(=40\left(1+3^4+3^8\right)⋮40\left(đpcm\right)\)
A = 119 + 118 +.....+11 + 1 chứng tỏ rằng A chia hết cho 5
B=2 + 22 + 23+ .......+ 220 chứng tỏ rằng B chia hết cho 5
C = 1+ 3+ 32 + ......+ 311 chứng tỏ rằng C chia hết cho 13 và 40
A = 119 + 118 +.....+11 + 1 chứng tỏ rằng A chia hết cho 5
B=2 + 22 + 23+ .......+ 220 chứng tỏ rằng B chia hết cho 5
C = 1+ 3+ 32 + ......+ 311 chứng tỏ rằng C chia hết cho 13 và 40
ta đảo ngược A lại ta có 1+112+113+...+119
2A=112+113+114+....+119+1110
lấy 2A-A còn 1110 có tận cùng băng 0 nên chia hết 5