Giải phương trình có chứa ẩn ở mẫu
(x-2)*(2/3x-6)=0
Giải phương trình chứa ẩn ở mẫu:
1/(x^2+3x+2) + 1/(x^2+5x+ 6) = 2/15
Giải phương trình chứa ẩn ở mẫu sau:
1 x 2 + 3 x + 2 − 3 x 2 − x − 2 = − 1 x 2 − 4 .
Mẫu thức chung ( x + 1 ) x + 2 x - 2 . Từ đó ta được x = -7
Giải phương trình chứa ẩn ở mẫu:
x+1/x-2+x/x+2=6-x/x^2-4+1
Có (x+1)/(x-2)+x/(x+2)=(6-x)/(x^2-4)+1
<=>(x+1)(x+2)/(x-2)(x+2)+x(x-2)/(x-2)(x+2)=(6-x)/(x-2)(x+2)+(x-2)(x+2)/(x-2)(x+2)
=>(x+1)(x+2)+x(x-2)=(6-x)+(x-2)(x+2)
<=>x^2+3x+2+x^2-2x=6-x+x^2-4
<=>2x^2+x+2=x^2-x+2
<=>x^2+2x=0
<=>x(x+2)=0
suy ra :x=0 hoặc x=-2
Vậy...
Phương trình chứa ẩn ở mẫu thì phải có ĐKXĐ để mẫu khác 0, và phải khử mẫu và còn phải loại những giá trị không thỏa mãn ĐK
Phương trình không chứa ẩn ở mẫu thì chỉ cần giải phương trình như bình thường
giải phương trình chứa ẩn ở mẫu
10/3-7x+2/6x+8=2+3x+1/4x+12
giải phương trình chứa ẩn ở mẫu sau:
\(\dfrac{3x^2+7x-10}{x}=0\)
\(\dfrac{3x^2+7x-10}{x}=0\left(x\ne0\right)\)
\(\Leftrightarrow3x^2+7x-10=0\)
\(\Leftrightarrow3x^2-3x+10x-10=0\)
\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(n\right)\\x=-\dfrac{10}{3}\left(n\right)\end{matrix}\right.\)
Giải phương trình chứa ẩn ở mẫu:
\(\frac{1}{x-1}-\frac{3x^2}{x^2-1}=\frac{2x}{x^2+x+1}\)
\(ĐKXĐ:x\ne\pm1\)
\(pt\Leftrightarrow\frac{\left(x+1\right)\left(x^2+x+1\right)-3x^2\left(x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)}\)\(=\frac{2x\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)-3x^2\left(x^2+x+1\right)\)\(=2x\left(x+1\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x+1-3x^2\right)\left(x^2+x+1\right)\)\(=2x\left(x^2-1\right)\)
\(\Leftrightarrow-3x^4-2x^3-x^2+2x+1\)\(=2x^3-2x\)
\(\Leftrightarrow-3x^4-4x^3-x^2+4x+1=0\)
Giải phương trình chứa ẩn ở mẫu sau:
2 x − 1 x 2 + 4 x − 5 + x − 2 x 2 − 10 x + 9 = 3 x − 12 x 2 − 4 x − 45 .
Giải phương trình chứa ẩn ở mẫu
a) \(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)
b) \(\frac{3x}{x^2+x+1}+\frac{8x}{x^2+2x+1}+\frac{x}{x^2+3x+1}=\frac{16}{5}\)
a) \(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)
Đặt \(x^2-2x+3=t\left(t\ge2\right)\), khi đó phương trình trở thành:
\(\frac{1}{t-1}+\frac{2}{t}=\frac{6}{t+1}\)
\(\Leftrightarrow\frac{t\left(t+1\right)+t^2-1}{\left(t-1\right)t\left(t+1\right)}=\frac{6t\left(t-1\right)}{\left(t-1\right)t\left(t+1\right)}\)
\(\Leftrightarrow t\left(t+1\right)+t^2-1=6t\left(t-1\right)\)
\(\Leftrightarrow2t^2+t-1=6t^2-6t\)
\(\Leftrightarrow-4t^2+7t-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=\frac{7+\sqrt{33}}{8}\\t=\frac{7-\sqrt{33}}{8}\end{cases}}\left(ktmđk\right)\)
Vậy phương trình vô nghiệm.