Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhật Hòa
Xem chi tiết
Lê Cao Phong
Xem chi tiết
Pham Van Hung
1 tháng 12 2018 lúc 11:58

a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)

b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)

c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì 

\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)

d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)

Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)

Vậy GTLN của B là - 1 khi x = -1

Lê Cao Phong
2 tháng 12 2018 lúc 11:32

Thanks bạn ;)

nhi phan
Xem chi tiết
Minh Anh
28 tháng 8 2016 lúc 11:22

a) \(A=\left|x-\frac{2}{3}\right|-4\)

Có: \(\left|x-\frac{2}{3}\right|\ge0\)

\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)

Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)

Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\)  ( K có GTLN bạn nhé )

b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)

\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)

Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)

Vậy:  \(Max_B=2\) tại \(x=-\frac{5}{6}\)

  \(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)

\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)

Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)

Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)

Arata Trinity Seven
Xem chi tiết
Linh Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 3 2023 lúc 23:50

a: \(A=\dfrac{2\sqrt{x}+6+\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{3}{\sqrt{x}+3}\)

b: \(\sqrt{x}+3>=3\)

=>A<=1

Dấu = xảy ra khi x=0

c: \(P=A:\left(B-1\right)=\dfrac{3}{\sqrt{x}+3}:\dfrac{2\sqrt{x}+1-\sqrt{x}-3}{\sqrt{x}+3}=\dfrac{3}{\sqrt{x}-2}\)

Để P nguyên thì căn x-2\(\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{1;25\right\}\)

DanAlex
Xem chi tiết
cô bé vô tư
Xem chi tiết
truongvan luu
Xem chi tiết
VN in my heart
11 tháng 7 2016 lúc 20:38

a) \(=-7\left(x^2-\frac{10}{7}x+\frac{2016}{7}\right)\)

      \(=-7\left(x^2-2.\frac{5}{7}x+\frac{25}{49}+\frac{14087}{49}\right)\)

       \(=-7\left(x-\frac{5}{7}\right)^2-\frac{14087}{7}\)

ta có

\(\left(x-\frac{5}{7}\right)^2\ge0\)với mọi x

\(=>-7\left(x-\frac{5}{7}\right)^2\le0\)(nhân cả hai vế với -7)

\(=>-7\left(x-\frac{5}{7}\right)^2-\frac{14087}{7}\le-\frac{14087}{7}\)

trường hợp dấu "=" xảy ra khi và chỉ khi

\(\left(x-\frac{5}{7}\right)^2=0\)

\(=>x-\frac{5}{7}=0\)

\(=>x=\frac{5}{7}\)

vậy GTLN cảu biểu thức là \(-\frac{14087}{7}\) khi và chỉ khi x= \(\frac{5}{7}\)

Le Dinh Quan
Xem chi tiết
NGƯỜI YÊU  CŨ CỦA BẠN
20 tháng 10 2018 lúc 23:33

 bn hok pt bậc 2 chưa để mình gải theo cách đó

tth_new
21 tháng 10 2018 lúc 7:25

Ta có: \(P=\frac{x^2-2x+2016}{x^2}=\frac{1}{x^2}\left(x^2-2x+2016\right)\)

Tìm GTNN: 

Ta dễ thấy P nhỏ nhất khi \(x^2-2x+2016\) bé nhất

Ta có: \(x^2-2x+2016\)

\(=x^2-2x+1+2015\)

\(=\left(x^2-2x+1\right)+2015\)

\(=\left(x-1\right)^2+2015\ge2015\) (do \(\left(x-1\right)^2\ge0\forall x\))

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

Thay x = 1 vào biểu thức,ta có: \(P=\frac{1}{x^2}\left[\left(x-1\right)^2+2015\right]\ge2015\)

Vậy \(P_{min}=2015\Leftrightarrow x=1\)

Còn về tìm GTLN thì ta thấy không tìm được vì \(x\ge1\)