Bài 1: Cho P(x) chia cho x-1 dư 4
chia cho x-3 dư 14
Tìm dư của phép chia P(x) cho ( x-1).(x-3)
Đa thức P(x) chia cho x-1 được số dư là 4 , chia cho x-3 được dư bằng 14 . Tìm dư của phép chia P(x) cho (x-1)(x-3)
Đa thức P(x) chia cho (x-1) được số dư bằng 4, chia cho (x-3) được số dư bằng 14. Tìm số dư của phép chia P(x) chia (x-1)(x-3) .
Các bạn giúp mình với!!!!
Đa thức P(x) chia cho x-1 được số dư là 4 chia cho x-3 thì được số dư là 14 tìm số dư của phép chia P(x) : (x-1)(x-3)
Do đa thức (x - 1)(x - 3) là đa thức bậc hai nên đa thức dư khi chia cho nó sẽ có dạng ax + b
Đặt \(P\left(x\right)=\left(x-1\right)\left(x-3\right)g\left(x\right)+ax+b\)
Ta có :
\(P\left(x\right)=\left(x-1\right)\left(x-3\right)g\left(x\right)+ax+b=\left(x-1\right)\left(x-3\right)g\left(x\right)+a\left(x-1\right)+\left(a+b\right)\)
\(=\left(x-1\right)\left[\left(x-3\right)g\left(x\right)+a\right]+\left(a+b\right)\)
Do P(x) chia (x - 1) dư 4 nên a + b = 4
\(P\left(x\right)=\left(x-1\right)\left(x-3\right)g\left(x\right)+ax+b=\left(x-3\right)\left(x-1\right)g\left(x\right)+a\left(x-3\right)+\left(3a+b\right)\)
\(=\left(x-1\right)\left[\left(x-1\right)g\left(x\right)+a\right]+\left(3a+b\right)\)
Do P(x) chia (x - 3) dư 14 nên 3a + b = 14
Vậy nên ta tìm được a = 5, b = -1 hay đa thức dư là 5x - 1.
Cho đa thức P(x) chia cho x-1 được dư bằng 4 . chia cho x-3 dược dư bằng 14 . tìm dư của P(x) chia cho (x-1)(x-3)
Gọi thương của phép chia đa thức P(x) cho (x-1 ) và (x-3) theo thứ thự là A(x) và B(x) và dư lần lượt là 4 và 14 .
Ta có :
\(P\left(x\right)=\left(x-1\right).A\left(x\right)+4\forall x\) (1)
\(P\left(x\right)=\left(x-3\right).B\left(x\right)+14\forall x\) (2)
Gọi thương của phép chia P(x) cho đa thức bậc hai (x-1)(x-3) là C(x) và dư là R(x) . Vì bậc của R(x) nhỏ hơn bậc 2 nên R(x) có dạng ax+b . Ta có :
\(P\left(x\right)=\left(x-1\right)\left(x-3\right).C\left(x\right)+\left(ax+b\right)\forall x\) (3)
Thay x=1 vào (1) và (3) ta có :
\(\hept{\begin{cases}P\left(1\right)=4\\P\left(1\right)=a+b\end{cases}}\)
Thay x=3 vào (2) và (3) ta có :
\(\hept{\begin{cases}P\left(3\right)=14\\P\left(3\right)=3a+b\end{cases}}\)
Từ \(\hept{\begin{cases}a+b=4\\3a+b=14\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=5\\b=-1\end{cases}}\)
Vậy dư của phép chia P(x) cho (x-1) (x-3) là 5x-1.
Đa thức P(x) chia cho (x-1) dư 4 , chia cho (x-3) dư 14 . Tìm số dư của P(x) chia cho (x-1)(x-3)
Gọi thương của phép chia P(x) cho (x-1)(x-3) lần lượt là A(x) và B(x) số dư lần lượt là 4 và 14 .
\(\Rightarrow P\left(x\right)=\left(x-1\right).A\left(x\right)+4\forall x\) (1)
\(P\left(x\right)=\left(x-3\right).B\left(x\right)+14\forall x\) (2)
Gọi thương của phép chia P(x) chia cho đa thức bậc 2 (x-1)(x-3) là C(x) và dư là R(x)
=> P(x) có dạng ax +b .
Ta có : \(P\left(x\right)=\left(x-1\right)\left(x-3\right).C\left(x\right)+\left(ax+b\right)\)\(\forall x\) (3)
Thay x=1 vào (1) và (3) ta có :
\(\Rightarrow\left\{{}\begin{matrix}P\left(1\right)=4\\P\left(1\right)=a+b\end{matrix}\right.\)
Thay x=3 vào (1) và (3) ta có :
\(\Rightarrow\left\{{}\begin{matrix}P\left(3\right)=14\\P\left(3\right)=a+b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=4\\3a+b=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=5\\b=-1\end{matrix}\right.\)
Vậy dư của P(x) cho (x-1)(x-3 ) là \(5x-1\).
giả sử đa thức f(x) chia cho x+1 dư 4, và chia cho x^2 +1 có dư là 2x+3 tìm dư trong phép chia đa thức f(x) cho (x+1)(x^2+1)
tìm phần dư của phép chia đa thức P(x) cho (x-1)(x3+1) biết rằng P(x) chia cho (x-1) thì dư 2029 và P(x) chia cho (x3+1) thì dư 3x2+2016x-10
tìm phần dư của phép chia đa thức P(x) cho (x-1)(x^3+1) biết rằng P(x) chia cho (x-1) dư 2029 và P(x) chia cho (x^3+1) thì dư \(3x^2+2016x-10...\)
Một đa thức khi chia cho x-1 dư 2, chia cho x-2 dư 3.Tìm dư trong phép chia đa thứ cho (x-1)(x-2)
Lời giải:
Gọi đa thức ban đầu là $Q(x)$. Khi chia cho $(x-1)(x-2)$ ta được dư là $E(x)$ và dư $ax+b$ với $a,b$ là số thực.
Ta có:
$Q(x)=(x-1)(x-2)E(x)+ax+b$
$Q(1)=a+b=2$
$Q(2)=2a+b=3$
$\Rightarrow a=1; b=1$
Vậy dư trong phép chia $Q(x)$ cho $(x-1)(x-2)$ là $x+1$