Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Lệ Hằng
Xem chi tiết
TFboys_Lê Phương Thảo
Xem chi tiết
Nguyen pham truong thinh
Xem chi tiết
Cô Hoàng Huyền
1 tháng 11 2017 lúc 10:31

Do đa thức (x - 1)(x - 3) là đa thức bậc hai nên đa thức dư khi chia cho nó sẽ có dạng ax + b

Đặt \(P\left(x\right)=\left(x-1\right)\left(x-3\right)g\left(x\right)+ax+b\)

Ta có :

\(P\left(x\right)=\left(x-1\right)\left(x-3\right)g\left(x\right)+ax+b=\left(x-1\right)\left(x-3\right)g\left(x\right)+a\left(x-1\right)+\left(a+b\right)\)

\(=\left(x-1\right)\left[\left(x-3\right)g\left(x\right)+a\right]+\left(a+b\right)\)

Do P(x) chia (x - 1) dư 4 nên a + b = 4

\(P\left(x\right)=\left(x-1\right)\left(x-3\right)g\left(x\right)+ax+b=\left(x-3\right)\left(x-1\right)g\left(x\right)+a\left(x-3\right)+\left(3a+b\right)\)

\(=\left(x-1\right)\left[\left(x-1\right)g\left(x\right)+a\right]+\left(3a+b\right)\)

Do P(x) chia (x - 3) dư 14 nên 3a + b = 14

Vậy nên ta tìm được a = 5, b = -1 hay đa thức dư là 5x - 1.

Trần Thu Phương
Xem chi tiết
Trần Thùy Dương
15 tháng 7 2018 lúc 8:49

Gọi thương của phép chia đa thức P(x) cho (x-1 ) và (x-3)  theo thứ thự là A(x) và  B(x) và dư lần lượt là 4 và 14 . 

Ta có :

\(P\left(x\right)=\left(x-1\right).A\left(x\right)+4\forall x\)      (1)

\(P\left(x\right)=\left(x-3\right).B\left(x\right)+14\forall x\) (2)

Gọi thương của phép chia P(x) cho đa thức bậc hai (x-1)(x-3) là C(x) và dư là   R(x) . Vì bậc của R(x) nhỏ hơn bậc 2 nên R(x) có  dạng ax+b . Ta có :

\(P\left(x\right)=\left(x-1\right)\left(x-3\right).C\left(x\right)+\left(ax+b\right)\forall x\)    (3)

Thay x=1 vào (1) và (3) ta có :

\(\hept{\begin{cases}P\left(1\right)=4\\P\left(1\right)=a+b\end{cases}}\)

Thay x=3  vào (2) và (3) ta có :

\(\hept{\begin{cases}P\left(3\right)=14\\P\left(3\right)=3a+b\end{cases}}\)

Từ \(\hept{\begin{cases}a+b=4\\3a+b=14\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=5\\b=-1\end{cases}}\)

Vậy dư của phép chia P(x) cho (x-1) (x-3)  là 5x-1.

Phan Nguyễn Hà My
Xem chi tiết
Y_Duyên_Trần
1 tháng 8 2018 lúc 10:15

Gọi thương của phép chia P(x) cho (x-1)(x-3) lần lượt là A(x) và B(x) số dư lần lượt là 4 và 14 .

\(\Rightarrow P\left(x\right)=\left(x-1\right).A\left(x\right)+4\forall x\) (1)

\(P\left(x\right)=\left(x-3\right).B\left(x\right)+14\forall x\) (2)

Gọi thương của phép chia P(x) chia cho đa thức bậc 2 (x-1)(x-3) là C(x) và dư là R(x)

=> P(x) có dạng ax +b .

Ta có : \(P\left(x\right)=\left(x-1\right)\left(x-3\right).C\left(x\right)+\left(ax+b\right)\)\(\forall x\) (3)

Thay x=1 vào (1) và (3) ta có :

\(\Rightarrow\left\{{}\begin{matrix}P\left(1\right)=4\\P\left(1\right)=a+b\end{matrix}\right.\)

Thay x=3 vào (1) và (3) ta có :

\(\Rightarrow\left\{{}\begin{matrix}P\left(3\right)=14\\P\left(3\right)=a+b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=4\\3a+b=14\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=5\\b=-1\end{matrix}\right.\)

Vậy dư của P(x) cho (x-1)(x-3 ) là \(5x-1\).

Hồ nguyễn hương giang
Xem chi tiết
Fresh
Xem chi tiết
duy nguyen
Xem chi tiết
Ý Nguyễn Minh
Xem chi tiết
Akai Haruma
25 tháng 6 lúc 13:15

Lời giải:
Gọi đa thức ban đầu là $Q(x)$. Khi chia cho $(x-1)(x-2)$ ta được dư là $E(x)$ và dư $ax+b$ với $a,b$ là số thực.

Ta có:

$Q(x)=(x-1)(x-2)E(x)+ax+b$

$Q(1)=a+b=2$

$Q(2)=2a+b=3$

$\Rightarrow a=1; b=1$

Vậy dư trong phép chia $Q(x)$ cho $(x-1)(x-2)$ là $x+1$