Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Minh Thành
Xem chi tiết
nguyễn viết hạ long
Xem chi tiết
Nguyễn Khánh Phương
Xem chi tiết
Nguyễn Huy Tú
9 tháng 6 2021 lúc 9:49

b, bạn kiểm tra lại đề nhé 

c, \(\frac{x\sqrt{x}-8+2x-4\sqrt{x}}{x-4}=\frac{\sqrt{x}\left(x-4\right)+2\left(x-4\right)}{x-4}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(x-4\right)}{x-4}=\sqrt{x}+2\)

Khách vãng lai đã xóa
Nguyễn Như Quỳnh
Xem chi tiết
Tuyển Trần Thị
6 tháng 7 2017 lúc 19:59

a,\(\left(\sqrt{3}-\sqrt{2}\right)+\sqrt{2}=\sqrt{3}\) (vi \(\sqrt{3}>\sqrt{2}\) )

b,\(3\sqrt{5}-\left(\sqrt{5}-1\right)\) =\(3\sqrt{5}-\sqrt{5}+1=2\sqrt{5}+1\)  

c,\(\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

Milky Way
6 tháng 7 2017 lúc 17:38

Bạn ỏi, bài này mk làm đc rồi nhé ^^. Bạn có cần trợ giúp hông ??? Rất sẵn lòng :)

Nguyễn Như Quỳnh
6 tháng 7 2017 lúc 18:46

làm làm cho mình đi

Nhật Minh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 7 2023 lúc 19:26

1: \(=\dfrac{1}{\sqrt{2}}\cdot\left(\sqrt{2x-2\sqrt{2x-1}}-\sqrt{2x+2\sqrt{2x-1}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\left|\sqrt{2x-1}-1\right|-\left|\sqrt{2x-1}+1\right|\right)\)

TH1: x>=1

\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{2x-1}-1-\sqrt{2x-1}-1\right)=-\sqrt{2}\)

TH2: 1/2<=x<1

\(A=\dfrac{1}{\sqrt{2}}\left(1-\sqrt{2x-1}-\sqrt{2x-1}-1\right)=-\sqrt{4x-2}\)

2: 

\(=\sqrt{x-1+6\sqrt{x-1}+9}-\sqrt{x-2-2\sqrt{x-2}+1+3}\)

\(=\sqrt{x-1}+3-\sqrt{\left(\sqrt{x-2}-1\right)^2+3}\)

hoàng mỹ trung
Xem chi tiết
Bao Gia
Xem chi tiết
Chu Quang Minh
30 tháng 8 2021 lúc 16:26

\(A=\dfrac{\sqrt{x}-\sqrt{x-1}-\sqrt{x}-\sqrt{x-1}}{x-x+1}=-2\sqrt{x-1}\)

PucaPuca
Xem chi tiết
le phan anh
28 tháng 7 2016 lúc 9:24

a)= \(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)

=\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)

\(-1+\sqrt{100}\)

= -1 +10

=9

JOKER_Võ Văn Quốc
28 tháng 7 2016 lúc 9:39

b)Ta có\(\left(\sqrt{n+1}-\sqrt{n}\right)\cdot\left(\sqrt{n+1}+\sqrt{n}\right)\)=n+1-n=1  (1)

Lại có:\(\frac{1}{\sqrt{n+1}+1}\cdot\left(\sqrt{n+1}+1\right)=1\)(2)

Từ (1) và (2)=>\(\left(\sqrt{n+1}-1\right)=\frac{1}{\sqrt{n+1}+1}\)

JOKER_Võ Văn Quốc
28 tháng 7 2016 lúc 9:58

c)\(\left(\frac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{6+4\sqrt{2}}}+\frac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\right)^2\)

=\(\left(\frac{\left(2+\sqrt{2}\right)^2}{\sqrt{2}+\sqrt{\left(2+\sqrt{2}\right)^2}}+\frac{\left(2-\sqrt{2}\right)^2}{\sqrt{2}-\sqrt{\left(2-\sqrt{2}\right)^2}}\right)^2\)

=\(\left(\frac{\left(2+\sqrt{2}\right)^2}{2+2\sqrt{2}}+\frac{\left(2-\sqrt{2}\right)^2}{-2+2\sqrt{2}}\right)^2\)

=\(\left(\frac{\left(2+\sqrt{2}\right)^2\cdot\left(2\sqrt{2}-2\right)}{\left(2\sqrt{2}+2\right)\cdot\left(2\sqrt{2}-2\right)}+\frac{\left(2-\sqrt{2}\right)^2\cdot\left(2\sqrt{2}+2\right)}{\left(2\sqrt{2}-2\right)\left(2\sqrt{2}+2\right)}\right)^2\)

=\(\left(\frac{\left(2+\sqrt{2}\right)^2\cdot\left(2\sqrt{2}-2\right)+\left(2-\sqrt{2}\right)^2\cdot\left(2\sqrt{2}+2\right)}{4}\right)^2\)

=\(\left(\frac{12\sqrt{2}-12+16-8\sqrt{2}+12\sqrt{2}+12-16-8\sqrt{2}}{4}\right)^2\)

=\(\left(\frac{8\sqrt{2}}{4}\right)^2=8\)

Đào Gia Khanh
Xem chi tiết
hồng hoa
17 tháng 8 2016 lúc 12:05

bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\) 

Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)

               \(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

               \(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{-1}{\sqrt{x}+1}\)