Tìm đa thức có bậc có hệ số nguyên nhận \(x=\sqrt{2}+\sqrt[3]{2}\) là nghiệm
chuyên đề phân tích đa thức thành nhân tử
1)tách 1 hạng tử hành nhiều hạng tử
định lý bổ sung;
+đa thức f(x)có nghiệm hữu tỉ thì có dạng p/q trong đó p là ước của hệ số tự do ,q là ước dương của hệ số cao nhất
+nếu f(x) có tổng các hệ số bằng 0 thì f(x) có 1 nhân tử là x-1
+nếu f(x) có tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số của các hạng tử bậc lẻ thì f9x) có 1 nhân tử là x+1
+nếu a là nghiệm nguyên của f(x) và f(1),f(-1) khác 0 thì \(\frac{f\left(1\right)}{a-1}\) và \(\frac{f\left(-1\right)}{a+1}\)đều là số nguyên
cho tớ mỗi dấu cộng là 1 ví dụ nhé .tớ chưa hiểu lém
Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1)=0; P(3)=0; P(5)=0
Tính giá trị của biểu thức: Q= P(-2) + 7P(6)
. Ta có: P(1)= 0, P(3)= 0, P(5)= 0 => 1,3,5 là nghiệm của pt, nên P(x) chứa nhân tử: (x-1) ; (x-3) ; (x-5)
. Vì P(x) bậc 4, có hệ số bậc cao nhất là 1 nên P(x) có dạng: \(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-a\right)\)
. \(Q=P\left(-2\right)+7P\left(-6\right)\) = \(\left(-2-1\right)\left(-2-3\right)\left(-2-5\right)\left(-2-a\right)+7\left(6-1\right)\left(6-3\right)\left(6-5\right)\left(6-a\right)\)
\(=210+105a+630-105a\) \(=840\)
. Vậy \(Q=840\)
Viết các phương trình bậc hai dạng x^2+px+q=0. Biết rằng, phương trình có 2 nghiệm nguyên , các hệ số p,q đều là những số nguyên và p+q+1=2003
CHO đa thức f(x)=ax^2+(a+b)*x+b. Tìm a và b biết rằng f(x) nhận -5/4 là nghiệm và khi chia cho đa thức (x-2) thì có dư là 39
thay x=-5/4 vào=>f(-5/4)=0
chia x-2 dư 39 =>f(2)=39
đc hệ pt bậc nhất 2 ẩn => tìm đc a và b
Viết 3 đa thức g(x), h(x), k(x) lần lượt có bậc một, bậc hai, bậc ba chỉ có một nghiệm là 1
Cho đa thức bậc 4 : P(x) có hệ số cao nhất là 1. BIết P(1) = 0 ; P(3) = 0 ; P(5) = 0. Tính M = P(-2) + 7. P(6) + 201
Cho phương trình bậc 2 : x²+(m+1)x+m=0
a) Tìm m để pt có 2 nghiệm phân biệt x1,x2 thỏa mãn 2x1+3x2=1
b) Khi pt có 2 nghiệm phân biệt x1,x2 lập hệ thức liên hệ giữa nghiệm độc lập với m
Cho m là số nguyên dương bé hơn 30. Cho bao nhiêu giá trị của m để đa thức x^2+mx+72 là tích của 2 đa thức bậc nhất với hệ số nguyên.
Chứng minh rằng nếu các hệ số của pt bậc 2
x2+p1x +q1=0 và x2+p2x+q2=0
Liên hệ với nhau bởi hệ thức p1p2 >=2(q1+q2) thì ít nhất 1 trong 2 pt có nghiệm?
GIÚP MÌNH VỚI!
Giả sử 2 pt vô nghiệm. Khi đó \(p_1^2< 4q_1;p_2^2< 4q_2\Rightarrow p_1^2+p_2^2< 4\left(q_1+q_2\right)\le2p_1p_2\Leftrightarrow\left(p_1-p_2\right)^2< 0\). (vô lí)
Do đó tồn tại 1 pt có nghiệm