tìm min max căn x-2019+ căn 2020-x
giải hộ em
a,Tìm min, max: 4x-16 căn x+4y-22 căn y-4 căn xy+36
b, tìm max :B= 6 cẵn+3/2x+4
c, Tìm Min : C=2/1-x+1/x
tìm gtnn của biểu thức p=|x-1|+căn x-2019 +|x-2020|
với các số thực x,y thỏa mãn:
x-căn(x+6) = căn(y+6)-y.
tìm MIN MAX của P=x+y
Từ bài ra ta có.
\(x+y=\sqrt{x+6}+\sqrt[]{y+6}\)
\(P^2=x+y+12+2.\sqrt{x+6}.\sqrt{y+6}=P+12+2.\sqrt{x+6}.\sqrt{y+6}\)
Mà \(2\sqrt{\left(x+6\right)\left(y+6\right)}\le x+6+y+6=P+12\)
Nên \(P^2\le2P+24\Leftrightarrow P^2-2P+1\le25\)
==>\(\left(P-1\right)^2\le25\Leftrightarrow-5\le P-1\le5\)
Đến đây bạn tự giải tiếp hộ nhé.
Có gì sai sót xin thứ lỗi.
\(x-\sqrt{x+6}=\sqrt{y+6}-y\)
\(\Leftrightarrow P=x+y=\sqrt{x+6}+\sqrt{y+6}\)
Suy ra \(P^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\le x+y+12+2.\frac{x+y+12}{2}\)
\(\Leftrightarrow P^2\le2P+24\Leftrightarrow P^2-2P-24\le0\Leftrightarrow-4\le P\le6\)
Tìm min
E = căn x2 + 2019
F = căn x2 + x + 4
mình đang cần gấp
\(E=\sqrt{x^2+2019}\ge\sqrt{2019}\) vậy min của E=\(\sqrt{2019}\)
dấu ''='' xảy ra khi và chỉ khi x=0
\(F=\sqrt{x^2+x+4}=\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{15}{4}}\ge\sqrt{\frac{15}{4}}\)
vậy min của F=\(\sqrt{\frac{15}{4}}\)
dấu ''='' xảy ra khi và chỉ khi x=-1/2
mình cũng ko biết có đúng ko nếu sai bạn thông cảm
mng giúp e với em đang cần gấp!
Tìm a min = căn x-2 cộng 2 nhân căn x+1 cộng 2019 trừ x
lớp 12 : tìm min , max y= căn(1+2sinx)+căn(1+2cosx)
a )max -13 - căn bậc hai của 2x-13
b) 5-x/3=y+2/4 và x+y=-1
c)tìm x 3/2x+7=5/3x+9
d)C=1,01+1,03+1,05+...+2,09
e)min(1*2)^2+ căn bậc hai của x+1
g) max : -11-căn bậc hai của 9x-18 + căn bậc hai x-2
hơi lộn xôn nhưng cố gắng giúp mik nhé !
TÌM MIN
E = căn x2 + 2019
F = căn x2 + x + 4
Mình đang cần gấp mong các bạn giúp đỡ
Mọi người ơi cho em hỏi : Tìm min,max của bt: căn bậc 2 của x-2 cộng với căn bậc hai của 4-x
tìm Max thì bn bình phương lên r bunyakovsky
Min thì Áp dụng \(\sqrt{A}+\sqrt{B}\ge\sqrt{A+B}\)