Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thái Lê
Xem chi tiết

giai di em

ho thi lanh
Xem chi tiết
le thi thanh tra
Xem chi tiết
Cần Cần
19 tháng 5 2017 lúc 12:26

Từ bài ra ta có.

\(x+y=\sqrt{x+6}+\sqrt[]{y+6}\) 

\(P^2=x+y+12+2.\sqrt{x+6}.\sqrt{y+6}=P+12+2.\sqrt{x+6}.\sqrt{y+6}\)

Mà \(2\sqrt{\left(x+6\right)\left(y+6\right)}\le x+6+y+6=P+12\)

Nên \(P^2\le2P+24\Leftrightarrow P^2-2P+1\le25\)

==>\(\left(P-1\right)^2\le25\Leftrightarrow-5\le P-1\le5\)

Đến đây bạn tự giải tiếp hộ nhé. 

Có gì sai sót xin thứ lỗi. 

tth_new
24 tháng 2 2019 lúc 8:06

\(x-\sqrt{x+6}=\sqrt{y+6}-y\)

\(\Leftrightarrow P=x+y=\sqrt{x+6}+\sqrt{y+6}\)

Suy ra \(P^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\le x+y+12+2.\frac{x+y+12}{2}\)

\(\Leftrightarrow P^2\le2P+24\Leftrightarrow P^2-2P-24\le0\Leftrightarrow-4\le P\le6\)

tth_new
24 tháng 2 2019 lúc 8:07

Thêm ĐK: \(x,y\ge-6\)

trinhnu pham
Xem chi tiết
nguyễn thị huyền anh
13 tháng 7 2018 lúc 11:30

\(E=\sqrt{x^2+2019}\ge\sqrt{2019}\)        vậy min của E=\(\sqrt{2019}\)

dấu ''='' xảy ra khi và chỉ khi x=0

\(F=\sqrt{x^2+x+4}=\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{15}{4}}\ge\sqrt{\frac{15}{4}}\)

vậy min của F=\(\sqrt{\frac{15}{4}}\)

dấu ''='' xảy ra khi và chỉ khi x=-1/2

mình cũng ko biết có đúng ko nếu sai bạn thông cảm

Trần Đức Tuấn
Xem chi tiết
Nam Nguyen
Xem chi tiết
Hà Phương Linh
Xem chi tiết
trinhnu pham
Xem chi tiết
Nguyễn Jimmy
Xem chi tiết
Nguyễn Jimmy
20 tháng 4 2017 lúc 19:31

mn cố gắng giúp em với

Neet
20 tháng 4 2017 lúc 20:27

tìm Max thì bn bình phương lên r bunyakovsky

Min thì Áp dụng \(\sqrt{A}+\sqrt{B}\ge\sqrt{A+B}\)