Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 10 2021 lúc 20:07

\(ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-2\sqrt{2x^2+5x-3}=1+x\sqrt{2x-1}-2x\sqrt{x+3}\\ \Leftrightarrow\left(2x-2\right)-\left(2\sqrt{2x^2+5x-3}-4\right)=\left(x\sqrt{2x-1}-x\right)-\left(2x\sqrt{x+3}-4x\right)-3x+3\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(2x^2+5x-7\right)}{\sqrt{2x^2+5x-3}+4}=\dfrac{x\left(2x-2\right)}{\sqrt{2x-1}+1}-\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}-3\left(x-1\right)\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(x-1\right)\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x\left(x-1\right)}{\sqrt{2x-1}+1}+\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}+3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left[2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3=0\left(1\right)\end{matrix}\right.\)

Với \(x\ge\dfrac{1}{2}\Leftrightarrow-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}>-\dfrac{2\cdot8}{4}=-4\)

\(-\dfrac{2x}{\sqrt{2x-1}+2}>-\dfrac{1}{2};\dfrac{2x}{\sqrt{x+3}+4x}>0\)

Do đó \(\left(1\right)>2-4-\dfrac{1}{2}+3=\dfrac{1}{2}>0\) nên (1) vô nghiệm

Vậy PT có nghiệm duy nhất \(x=1\)

callme_lee06
Xem chi tiết
Đặng Tiến Thắng
Xem chi tiết
dia fic
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
IS
28 tháng 3 2020 lúc 19:49

điều kiện xác đinh \(x\ge-\frac{1}{2}\)

ta có \(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\)

\(\Leftrightarrow5x^4+2x-2\sqrt{2x+1}+2=0\Leftrightarrow5x^4+2x+1-2\sqrt{2x+1}+1=0\)

\(\Leftrightarrow5x^4+\left(\sqrt{2x+1}-1\right)^2=0=>\orbr{\begin{cases}5x^4=0\\\sqrt{2x+1}-1=0\end{cases}\Leftrightarrow x=0\left(nhận\right)}\)

zậy \(S=\left\{0\right\}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
31 tháng 3 2020 lúc 19:38

ĐK: \(x\ge\frac{-1}{2}\). PT đã cho có thể viết lại thành 

\(5x^4+\left(\sqrt{2x+1}-1\right)^2=0\)

Do \(5x^4\ge0,\left(\sqrt{2x+1}-1\right)^2\ge0\)nên PT trên chỉ thỏa mãn khi \(\hept{\begin{cases}5x^4=0\\\left(\sqrt{2x+1}-1\right)^2=0\end{cases}}\)

Giải hệ này ta được x=0

Vậy PT đã cho có nghiệm duy nhất x=0

Khách vãng lai đã xóa
Chung Đào Văn
Xem chi tiết
Đào Thu Hiền
Xem chi tiết
Dương Bình Nguyên
Xem chi tiết
Thăng Vũ
Xem chi tiết
Tran Le Khanh Linh
5 tháng 5 2020 lúc 20:31

ĐKXĐ: \(\hept{\begin{cases}x^2-5x+2\ge0\\2x-1>0\\x-2\ge0\end{cases}\Leftrightarrow x\ge2}\)

Phương trình 

\(\Leftrightarrow\sqrt{x-2}\sqrt{2x-1}-x\sqrt{x-2}+3x-x^2-3\sqrt{2x-1}+x\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(\sqrt{2x-1}-x\right)\left(\sqrt{x-2}-3+x\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{2x-1}=x\\\sqrt{x-2}=3-x\end{cases}}\)

<=> 2x-1=x2 hoặc \(\hept{\begin{cases}3-x\ge0\\x-2=3-x^2\end{cases}}\)

<=> x2-2x+1=0 hoặc \(\hept{\begin{cases}x\le3\\x^2-7x+11=0\end{cases}}\)

<=> x=1 hoặc \(\hept{\begin{cases}x\le3\\x=\frac{7\pm\sqrt{3}}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{7-\sqrt{5}}{2}\end{cases}}\)

Đối chiếu điều kiện x>=2 => x=\(=\frac{7-\sqrt{5}}{2}\left(tm\right)\)

Vậy pt có nghiệm \(x=\frac{7-\sqrt{5}}{2}\)

Khách vãng lai đã xóa
Thăng Vũ
5 tháng 5 2020 lúc 21:46

đề bài có sai ko vậy

Khách vãng lai đã xóa