tìm hằng số a,b,c sao cho
f(x)=ax^3+bx^2+c chia hết cho (x+2)chia cho x^2-1 dư x+5
1. tìm các hằng số a và b sao cho x^3 + ax + b chia hết cho x+1 thì dư 7 chia cho x-3 dư -5.
2. tìm các hằng số a,b,c sao cho ax^3 + bx^2 + c chia cho x+ 2 , chia cho x^2 - 1 thì dư x+5
tìm hằng số `a,b,c` sao cho `ax^3 +bx^2 +c` chia hết cho `x+2` và chia `x^2 -1` dư 5.
Đặt \(f\left(x\right)=ax^3+bx^2+c\)
Do \(f\left(x\right)\) chia hết \(x+2\Rightarrow f\left(-2\right)=0\)
\(\Rightarrow-8a+4b+c=0\) (1)
Do \(f\left(x\right)\) chia \(x^2-1\) dư 5
\(\Rightarrow f\left(x\right)=g\left(x\right).\left(x^2-1\right)+5\) với \(g\left(x\right)\) là 1 đa thức bậc nhất nào đó
\(\Rightarrow ax^3+bx^2+c=g\left(x\right)\left(x^2-1\right)+5\) (*)
Thay \(x=1\) vào (*) \(\Rightarrow a+b+c=5\) (2)
Thay \(x=-1\) vào (*) \(\Rightarrow-a+b+c=5\) (3)
(1);(2);(3) \(\Rightarrow\left\{{}\begin{matrix}-8a+4b+c=0\\a+b+c=5\\-a+b+c=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{3}\\c=\dfrac{20}{3}\end{matrix}\right.\)
Tìm các hằng số a,b,c sao cho ax3+bx2+c chia hết cho x+2, chia x2-1 thì dư x+5
a)Xác định hằng số a sao cho:
2x2+ax+1 chia x-3 dư 4
b) Tìm các số a,b sao cho \(x^3+ax+b\) chia cho x+1 dư 7 chia cho x-3 dư 5
c) Tìm các số a,b sao cho \(ax^3+bx^2+c\) chia hết cho x+2 chia cho x2-1 thì dư x+5
Tìm các hằng số a, b, c sao cho \(ax^3+bx^2+c\) chia hết cho x+2, chia cho \(x^2-1\)dư x+5
xác định hằng số a,b,c sao cho ax^3+bx^2+c chia hết cho x+2 và khi chia cho x^2-1 thì dư x+5
Do \(\left(ax^3+bx^2+c\right)⋮\left(x+2\right)\Rightarrow ax^3+bx^2+c=\left(x+2\right).Q\left(x\right)\)(*)
Thay x = - 2 vào (*) ta được :\(-8a+4b+c=0\)(1)
Do \(\left(ax^3+bx^2+c\right):\left(x^2-1\right)\text{dư}\text{ }x+5\) \(\Rightarrow\left(ax^{\:3}+bx^2+c-x-5\right)⋮\left(x^2-1\right)\left[\text{ }\right]\)
\(\Rightarrow ax^3+bx^2-x+c-5=\left(x^2-1\right)G\left(x\right)\)(**)
Thay x = 1 vào (**) ta đc \(a+b+c-6=0\Rightarrow a+b+c=6\)(2)
Thay \(x=-1\) vào (**) ta đc \(-a+b-c-4=0\Leftrightarrow-a+b-c=4\)(3)
Từ (1);(2);(3) ta có phương trình : \(\hept{\begin{cases}-8a+4b+c=0\\a+b+c=6\\-a+b-c=4\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{7}{3}\\b=5\\c=-\frac{4}{3}\end{cases}}}\)
Xá đinh các hằng số a,b sao cho
a) (x4+ax+b) chia hết (x2-4)
b) (x4+ax3+bx-1) chia hết (x2-1)
c) x3+ax+b chia cho x+1 dư 7, chia cho x-3 dư -5
Xác định các hằng số a,b sao cho
a) x^4 + ax^2 + b chia hết cho x^2 - x+1
b) ax^3 + bx^2 + 5x -50 chia hết cho x^2 + 3x - 10
c) ax^3 + bx-24 chia hết cho (x+1) (x+3)
\(a) x^4 + ax^2 + b \\
= x^4 + 2x^2 + b + ax^2 - 2x^2\\
= (x^2 + 1)^2 - x^2 + x^2(a + b)\\
= (x^2 + x + 1)(x^2 - x + 1) + x^2(a + b) \\
= (x^2 + x + 1)(x^2 - x + 1) + (a + b)(x^2 + x + 1) - (a + b)(x - 1).
\)
Để \(x^4 + ax^2 + b\) chia hết cho \(x^2 + x + 1\) thì số dư bằng 0
\(\Rightarrow\left(a-1\right)\left(b-1\right)=0\\
\Rightarrow a=b=1\)
\(b) ax^3 + bx^2 + 5x - 50\\
= (x^2 + 3x - 10)(cx + d) \\
= ax^3 + bx^2 + 5x - 50\\
= cx^3 + (d + 3c)x^2 + (3d - 10c)x - 10d \\\)
Mà: \(a = c\)
\(b = d + 3c\\
5 = 3d - 10c\\
-50 = -10d\)
Vậy \(a = 1, b = 8\)
\(d)f(x)=ax^3+bx-24\)
Để f(x) chia hết cho (x + 1)(x + 3) thì f(-1)=0 và f(-3) = 0
f(-1)=0 => -a - b - 24 = 0 (*)
f(-3) = 0 => - 27a - 3b - 24 =0 (**)
Từ (*) và (**) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a-b-24=0\\-27a-3b-24=0\end{matrix}\right.\)
Giải ra ta được a = 2; b = -26
2. Xác định các hằng số a,b, sao cho
a) x^4 + ax^2 + b chia hết cho x^2 -x +1
b) ax^3 + bx^2 + 5x - 50 chia hết cho x^2 + 3x - 10
c) ax^ 3 + bx - 24 chia hết cho ( x+1) ( x+3)