Tìm các giá trị của x sao cho:
a)\(\sqrt{x^2-3}\le x^2-3\\ \)
b)\(\sqrt{x^2-6x+9}>x-6\)
Tìm các giá trị của x sao cho :
a) \(\sqrt{x^2-3}\le x^2-3\)
b) \(\sqrt{x^2-6x+9}>x-6\)
Tìm các giá trị của x sao cho :
a) \(\sqrt{x^2-3}\le x^2-3\)
b) \(\sqrt{x^2-6x+9}>x-6\)
\(\text{a) ĐKXĐ: }x\ge\sqrt{3}\)
\(\sqrt{x^2-3}\le x^2-3\)
\(\Leftrightarrow\left(\sqrt{x^2-3}\right)^2\le\left(x^2-3\right)^2\)
\(\Leftrightarrow x^2-3\le x^4-6x^2+9\)
\(\Leftrightarrow x^2-3-x^4+6x^2-9\le0\)
\(\Leftrightarrow-x^4+7x^2-12\le0\)
\(\Leftrightarrow-x^2+4x^2+3x^2-12\le0\)
\(\Leftrightarrow\left(-x^4+4x^2\right)+\left(3x^2-12\right)\le0\)
\(\Leftrightarrow-x^2\left(x^2-4\right)+3\left(x^2-4\right)\le0\)
\(\Leftrightarrow\left(x^2-4\right)\left(3-x^2\right)\le0\)
\(\text{Đến đây EZ rồi}\)
Tìm các giá trị của x sao cho:
\(a,\sqrt{x^2-3}=x^2-3\)
\(b,\sqrt{x^2-6x+9}=6-x\)
a) ĐKXĐ : \(\orbr{\begin{cases}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{cases}}\)
\(\sqrt{x^2-3}=x^2-3\)
\(\Leftrightarrow\sqrt{x^2-3}=\sqrt{x^2-3}\cdot\sqrt{x^2-3}\)
\(\Leftrightarrow\sqrt{x^2-3}-\sqrt{x^2-3}\cdot\sqrt{x^2-3}=0\)
\(\Leftrightarrow\sqrt{x^2-3}\left(1-\sqrt{x^2-3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-3}=0\\\sqrt{x^2-3}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-3=0\\x^2-3=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\in\left\{\pm\sqrt{3}\right\}\\x\in\left\{\pm2\right\}\end{cases}}\)( thỏa mãn )
b) ĐKXĐ : \(x\le6\)
\(\sqrt{x^2-6x+9}=6-x\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=6-x\)
\(\Leftrightarrow\left|x-3\right|=6-x\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=6-x\\x-3=x-6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=9\\0x=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{2}\\x\in\varnothing\end{cases}}\)( thỏa mãn )
Tìm các giá trị của x sao cho:
a, \(\sqrt{x^2-3}< =x^2-3\)
b, \(\sqrt{x^2-6x+9}>x-6\)
a,\(\sqrt{x^2-3}\le x^2-3\)
\(\Leftrightarrow x^2-3\le x^4-6x^2+9\)
\(\Leftrightarrow x^4-6x^2-x^2+12\ge0\)
\(\Leftrightarrow x^4-7x^2+12\ge0\)
\(\Leftrightarrow x^4-\frac{2.7}{2}.x^2+\frac{49}{4}-\frac{1}{4}\ge0\)
\(\Leftrightarrow\left(x^2-\frac{7}{2}\right)^2\ge\frac{1}{4}\)
\(\Leftrightarrow x^2-\frac{7}{2}\ge\frac{1}{2}\Leftrightarrow x^2\ge4\)
\(\Leftrightarrow x\le-2\)và \(x\ge2\)
KL:
b,\(\sqrt{x^2-6x+9}>x-6\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}>x-6\)
\(\Leftrightarrow|x-3|>x-6\)
Với x\(\ge\)3 phương trình <=>x-3>x-6 (luôn đúng)
Với x<3 phương trình <=> 3-x>x-6 <=>x<9/2 <=>x<4,5
KL:
A=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\) và B=\(\dfrac{6x+6\sqrt{x}-12}{x +5\sqrt{x}+4}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}vớix\ge0;x\ne9\)
a) tính giá trị của A tại x=25
b)rút gọn để P=A.B
c) tìm tất cả giá trị nguyên của x để\(\sqrt{P}\le\dfrac{1}{2}\)
Giúp vớiii ạaa
a: Khi x=25 thì \(A=\dfrac{5-2}{5-3}=\dfrac{3}{2}\)
b: P=A*B
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\left(\dfrac{6x+6\sqrt{x}-12}{x+5\sqrt{x}+4}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}\right)\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\cdot\left(\dfrac{6x+6\sqrt{x}-12}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}\right)\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\cdot\dfrac{6x+6\sqrt{x}-12-5x-5\sqrt{x}}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
c: \(\sqrt{P}< =\dfrac{1}{2}\)
=>0<=P<=1/4
=>\(\left\{{}\begin{matrix}P>=0\\P-\dfrac{1}{4}< =0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{x}-2}{\sqrt{x}-1}>=0\\\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{1}{4}< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\\dfrac{4\left(\sqrt{x}-2\right)-\sqrt{x}+1}{4\left(\sqrt{x}-1\right)}< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\\dfrac{3\sqrt{x}-7}{\sqrt{x}-1}< =0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\1< \sqrt{x}< =\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\1< x< \dfrac{49}{9}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\x=\dfrac{49}{9}\end{matrix}\right.\)
=>\(4< =x< =\dfrac{49}{9}\)
mà x nguyên
nên \(x\in\left\{4;5\right\}\)
Tìm các giá trị của x sao cho:
a)\(\sqrt{x^2-3}\le x^2-3\)
b)\(\sqrt{\left(x-3\right)^2}>x-6\)
\(Cho:A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(1,\)Rút gọn biểu thức A
\(2,\)Tìm GTLN của A
\(3,\)Tìm \(x\in Q\) để A nhận giá trị nguyên
1:
\(A=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
3: A nguyên
=>-5căn x-15+17 chia hết cho căn x+3
=>căn x+3 thuộc Ư(17)
=>căn x+3=17
=>x=196
Tìm tất cả các giá trị của m để hàm số sau xác định trên R:
a, \(y=\dfrac{x+3}{\left(2m-4\right)x+m^2-9}\)
b, \(y=\dfrac{x+3}{x^2-2\left(m-3\right)x+9}\)
c, \(y=\dfrac{x+3}{\sqrt{x^2+6x+2m-3}}\)
d, \(y=\dfrac{x+3}{\sqrt{-x^2+6x+2m-3}}\)
e, \(y=\dfrac{x+3}{\sqrt{x^2+2\left(m-1\right)x+2m-2}}\)
Hàm số xác định trên R khi và chỉ khi:
a.
\(\left(2m-4\right)x+m^2-9=0\) vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}2m-4=0\\m^2-9\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)
b.
\(x^2-2\left(m-3\right)x+9=0\) vô nghiệm
\(\Leftrightarrow\Delta'=\left(m-3\right)^2-9< 0\)
\(\Leftrightarrow m^2-6m< 0\Rightarrow0< m< 6\)
c.
\(x^2+6x+2m-3>0\) với mọi x
\(\Leftrightarrow\Delta'=9-\left(2m-3\right)< 0\)
\(\Leftrightarrow m>6\)
e.
\(-x^2+6x+2m-3>0\) với mọi x
Mà \(a=-1< 0\Rightarrow\) không tồn tại m thỏa mãn
f.
\(x^2+2\left(m-1\right)x+2m-2>0\) với mọi x
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(2m-2\right)=m^2-4m+3< 0\)
\(\Leftrightarrow1< m< 3\)
a,Rút gọn q
b, Tìm các giá trị của x để q<1
c, Tìm các giá trị nguyên của x để giá trị tương ứng của q cũng là số nguyên\(q=\left(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}\right)-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)