Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ốcc♥
Xem chi tiết
Edogawa Conan
4 tháng 10 2019 lúc 22:16

a) A = x(y - z) + 2(z - y) = x(y - z) - 2(y - z) = (x - 2)(y - z) = (2 - 2)(1,007 - (-0,006)] = 0

b) B = 2x(y - z) + (z - y)(x + t) = 2x(y - z)  - (y - z)(x + t) = (2x - x - t)(y - z) = (x - t)(y - z) = [18,3 - (-31,7)](24,6 - 10,6) = 50.14 = 700

c) C = (x - y)(y + z) + y(y - x) = (x - y)(y + z) - y(x - y) = (x - y)(y + z - y) = (x - y).z = (0,86 - 0,26).1,5 = 0,6.1,5 = 0,9

Quynh Luong
Xem chi tiết
Phía sau một cô gái
12 tháng 2 2023 lúc 19:34

Theo đề, ta có:   \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{t}{x}\) \(=\dfrac{x+y+z+t}{y+z+t+x}=1\) .

\(\Rightarrow x=y;y=z;z=t;t=x\)

\(\Rightarrow x=y=z=t\)

\(M=\dfrac{2x-y}{z+t}+\dfrac{2y-z}{t+x}+\dfrac{2z-t}{x+y}+\dfrac{2t-x}{y-z}\)

\(M=\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}\)

\(M=\dfrac{1}{2}.4\)

\(M=2\)

 

Nguyễn Thu Ngân
Xem chi tiết
Beh5cyk
Xem chi tiết
Beh5cyk
17 tháng 3 2019 lúc 8:33

Giúp mình nha mk đg cần gấp

tth_new
17 tháng 3 2019 lúc 8:39

Làm rồi nhưng olm không hiện.Hướng dẫn thôi nha.

Cộng 1 vào mỗi vế của giả thiết.Rồi chia tất cả các vế của giả thiết cho x + y + z +t khác 0.

Ta sẽ được: \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\frac{1}{t}\Rightarrow x=y=z=t\)

Đến đây thay vào M: y,z,t bởi x ta sẽ thu được kết quả.

Beh5cyk
17 tháng 3 2019 lúc 14:29

a,Tìm 2 số hữu tỷ a,b biết rằng a—b=2(a+b)=3:b

b,Ba phân số có tổng bằng 213/70 các tử số của chúng tỉ lệ với 3 4 5 các mẫu số của chúng tỉ lệ với 5 1 2 Tìm ba phân số đã cho

Tìm giá trị x y z nguyên dương thỏa mãn 2(x+y+z)=xyz

Trần Thị Ngọc
Xem chi tiết
Vy Thị Hoàng Lan ( Toán...
12 tháng 8 2019 lúc 12:59

\(a,A=5x^2a-10xya+5y^2a\)

\(=5a\left(x^2-2xy+y^2\right)\)

\(=5a\left(x-y\right)^2\)

Thay x = 124; y=24;a=2 ta có 

\(5.2\left(124-24\right)^2=10.100^2=100000\)

\(b,B=2x^2+2y^2-x^2z+z-y^2z-2\)

\(=2\left(x^2+y^2-1\right)-z\left(x^2+y^2-1\right)\)

\(=\left(x^2+y^2-1\right)\left(2-z\right)\)

Thay x = 1 ; y = 1; z= -1 ta có 

\(\left(1^2+1^2-1\right)\left(2-\left(-1\right)\right)=\left(1+1-1\right)\left(2+1\right)=1.3=3\)

\(c,C=x^2-y^2+2y-1\)

\(=x^2-\left(y^2-2y+1\right)=x^2-\left(y-1\right)^2=\left(x-y+1\right)\left(x+y-1\right)\)

Thay x = 75; y = 26 ta có 

\(\left(75-26+1\right)\left(75+26-1\right)=50.100=5000\)

Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Huy Tú
10 tháng 3 2021 lúc 12:59

Bài 1 : 

\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)

hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)

mà \(xyz=2\Rightarrow-xyz=-2\)

hay N nhận giá trị -2 

Bài 2 : 

\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)

hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)

hay biểu thức trên nhận giá trị là 24 

c, Ta có : \(a-b=3\Rightarrow a=3+b\)

hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)

\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi 

Khách vãng lai đã xóa
Ngô Chi Lan
10 tháng 3 2021 lúc 20:03

1.Ta có:\(x+y+z=0\)

\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)

2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)

Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)

Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)

Vậy....

Khách vãng lai đã xóa
Trịnh Quỳnh Anh
30 tháng 3 2021 lúc 19:20
a=(a+y)(y+a)=a+a-a
Khách vãng lai đã xóa
Nguyễn Khánh Linh
Xem chi tiết
Liễu Lê thị
Xem chi tiết
Liễu Lê thị
Xem chi tiết
ILoveMath
13 tháng 11 2021 lúc 20:58

TH1: \(x+y+z+t\ne0\) 

Áp dụng t/c dtsbn ta có:

\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)\(\dfrac{x}{y+z+t}=\dfrac{1}{3}\Rightarrow3x=y+z+t\Rightarrow4x=x+y+z+t\\ \dfrac{y}{z+t+x}=\dfrac{1}{3}\Rightarrow3y=x+z+t\Rightarrow4y=x+y+z+t\\ \dfrac{z}{t+x+y}=\dfrac{1}{3}\Rightarrow3z=x+y+t\Rightarrow4z=x+y+z+t\\ \dfrac{t}{x+y+z}=\dfrac{1}{3}\Rightarrow3t=x+y+z\Rightarrow4t=x+y+z+t\)
\(\Rightarrow4x=4y=4z=4t\\ \Rightarrow x=y=z=t\)

\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\\ =1+1+1+1\\ =4\)

TH1: \(x+y+z+t=0\) 

\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{matrix}\right.\)

\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\\ =\dfrac{-\left(z+t\right)}{z+t}+\dfrac{-\left(t+x\right)}{t+x}+\dfrac{-\left(x+y\right)}{x+y}+\dfrac{-\left(y+z\right)}{y+z}\\ =-1-1-1-1\\ =-4\)