Cho \(x\), \(y\) , \(z\) \(\ne0\) và \(\frac{x+y}{z}=\frac{y+z}{x}=\frac{z+x}{y}=k\). Tính \(k\)
1. Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=k\) và \(a+b+c=abc\)
Tìm \(k\) để \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=k\)
2. Cho \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=0\) và \(x+y+z\ne0\)
C/m \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
Lạ nhỉ mình trả lời rồi mà
ta có {nhân phân phối ra dẽ hơn} là ghép nhân tử
\(\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\left(x+y+z\right)=\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}....\right)+\left(x+y+z\right)\)
Chia hai vế cho (x+y+z khác 0) chú ý => dpcm
quái lại câu 1 đâu
(a+b+c)=abc tất nhiên theo đầu đk a,b,c khác không
chia hai vế cho abc/2
2/bc+2/ac+2/ab=2 (*)
đăt: 1/a=x; 1/b=y; 1/c=z
ta có
x+y+z=k (**)
x^2+y^2+z^2=k(***)
lấy (*)+(***),<=>(x+y+z)^2=2+k
=> k^2=2+k
=> k^2-k=2
k^2-k+1/4=1/4+2=9/4
\(\orbr{\begin{cases}k=\frac{1}{2}+\frac{3}{2}=\frac{5}{2}\\k=\frac{1}{2}-\frac{3}{2}=-\frac{1}{2}\end{cases}}\)
Mình chưa test lại đâu bạn tự test nhé
câu 2 là yêu cầu c/m chứ chưa cho trước bn
còn câu 1 bn giải rõ giùm mk
- thanks
Cho \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=0\)và \(x+y+z\ne0\)Tính \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\)
Cho \(x;y;z\ne0\)và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính \(K=\left(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{zx}{y^2}-2\right)^{2017}\)
cần c/m : nếu x+y+z=0 thì x3+y3+z3=3xyz
rồi áp dụng vô tính K=[xyz(1/x3+1/y3+1/z3)-2]2017=(3-2)2017=1
Cho \(x+y+z\ne0,\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)
Tính \(P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
Cho x,y,z là 3 số thỏa mãn \(x+y\ne0;y+z\ne0;z+x\ne0\) . Tính giá tri biểu thức\(A=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)
Cho \(x,y,z\ne0\), x,y,z đôi một khác nhau và \(x^3+y^3+z^3=3xyz\)
Tính: \(\left(\frac{x-y}{z}+\frac{y-z}{x}+\frac{z-x}{y}\right)\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)\)
(chỉ cần làm trường hợp x+y+z=0 thôi nhé)
dat a=x-y
b=y-z
c=z-x
a+b+c=0=x+y+z
\(\left(\frac{a}{z}+\frac{b}{x}+\frac{c}{y}\right)\left(\frac{z}{a}+\frac{x}{b}+\frac{y}{c}\right)\)
dung bumiakopsky de giai
...........................................
cho \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\) và \(x+y+z\ne0\)
tính\(\frac{x^{2019}.y^{2020}}{z^{4039}}\)
áp dụng t/c dãy ts = nhau
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{x+y+z}=1\)
x/y=1=> x=y
y/z=1=>y=z
z/x=1=>z=x
=> x=y=z
\(\frac{x^{2019}.y^{2020}}{z^{4039}}=\frac{x^{2019}.x^{2020}}{x^{4039}}=\frac{x^{4039}}{x^{4039}}=1\)
Cho x,y,z là 3 số thỏa mãn \(x+y\ne0;y+z\ne0;x+z\ne0\) . Tính giá tri biểu thức \(A=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\)
link nè:
Câu hỏi của Cao Thành Lộc - Toán lớp 7 - Học toán với OnlineMath
Giúp mk nhanh nha , mai mk phải kiểm tra rùi
Cho\(x,y,z\ne0\), biết:
\(\frac{y+z-x}{z}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Tính:\(B=\left(1+\frac{x}{y}\right).\left(1+\frac{y}{z}\right).\left(1+\frac{z}{x}\right)\)
Áp dụng tính chất tỉ lệ thức, ta có:
\(\frac{y+z-x}{x}+\frac{z+x-y}{y}+\frac{x+y-z}{2}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow y+z-x=x;z+x-y=y;x+y-z=z\)
Do đó ta có:
\(1+\frac{x}{y}=\frac{z+x-y}{y}+\frac{y+z-x}{y}=\frac{2z}{y}\)
Tương tự ta có:
\(1+\frac{y}{z}=\frac{2x}{z}\)và \(1+\frac{z}{x}=\frac{2y}{x}\)
Do đó biểu thức sẽ bằng:
\(\frac{2x}{z}.\frac{2y}{x}.\frac{2z}{y}=\frac{8xyz}{xyz}=8\)
Áp dụng tính chất tỉ lệ thức có:
(y+z-x)/x + (z+x-y)/y + (x+y-z)/z= (y+z-x+z+x-y+x+y-z)/(x+y+z)= (x+y+z)/(x+y+z)=1
=>y+z-x=x ; z+x-y=y và x+y-z=z
Do đó ta có:
(1 + x/y)= [(z+x-y)/y + (y+z-x)/y] =2z/y
Tương tự có:
1 + y/z=2x/z và 1 + z/x =2y/x
Do đó biểu thức sẽ bằng :
2x/z . 2y/x . 2z/y = 8xyz/xyz =8