Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thị Hằng
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết

Chứng minh bằng cách phản chứng

Giả sử tồn tại số nguyên tố p thõa mãn

Đặt 3p + 19 ( p - 1 ) = n2 ( n là một số nguyên )

* Nếu p = 2, 3 dễ thấy không có số số nguyên n nào thõa mãn

* Nếu p > 3 , p lẻ

+ ) p = 4k + 1

Ta có : 3 ≡ - 1 ( mod4 )

nên 3p ≡ - 1 ( mod4 )

và 19 ≡ 3 ( mod4 ) ; p - 1 ≡ 0 ( mod4 )

Do đó VT  ≡ VP ≡ - 1 ( mod4 ) ( vô lí )

+ ) p = 4k + 3

Theo định lí Fermat ta có :

3p  ≡ 3 ( modp )

và 19 ( p - 1 ) ≡ - 19 ( modp )

nên VT ≡ - 16 ( modp )

Do đó n2 + 16 \(⋮\) p

Từ đề ta có 4 \(⋮\) p ( vô lí vì 4 không có ước dạng 4k + 3 )

Vậy ta có đpcm

Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
13 tháng 11 2019 lúc 14:45

Gỉa sử tồn tại số nguyên p thỏa mãn 

Đặt \(3^p+19\left(p-1\right)=n^2\)( n là 1 số nguyên )

* Nếu p=2,3 . Dễ có ko có số nguyên n nào thỏa mãn 

* Nếu p>3 , p lẻ 

+) p=4k +1

Ta có 

\(3=-1\left(modA\right)\)

nên : \(3^p=-1\left(modA\right)\)

Mà \(19\equiv3\left(modA\right);p-1\equiv0\left(modA\right)\)

Do đó : \(VT\equiv VP\equiv-1\left(modA\right)\)( vô lí )

+) p=4k+3

Theo định lí Fermat ta có 

\(3^p=3\left(modp\right)\)

và \(19\left(p-1\right)\equiv-19\left(modp\right)\)

nên \(VT\equiv-16\left(modp\right)\)

Do đó : \(n^2+16⋮p\)

-> Ta có : \(4⋮b\)( vô lí )

Vậy ta có đpcm 

Khách vãng lai đã xóa
alibaba nguyễn
13 tháng 11 2019 lúc 14:48

Giả sử:

\(3^p+19\left(p-1\right)=x^2\)

Xét \(p=2,3\)

Xét \(p>3\)

\(\Rightarrow\orbr{\begin{cases}p=4k+1\\p=4k+3\end{cases}}\)

Với \(p=4k+1\)

\(\Rightarrow3^p+19\left(p-1\right)\equiv3\left(mod4\right)\) vô lý vì số chính phương chia cho 4 không có dư 3.

Với \(p=4k+3\)

\(\Rightarrow3^p+19\left(p-1\right)\equiv3-19\equiv-16\left(modp\right)\)

\(\Rightarrow x^2+16⋮p\)

\(\Rightarrow4⋮p\)(vô lý vì p > 4)

Khách vãng lai đã xóa
Trần Anh
Xem chi tiết
❤Firei_Star❤
Xem chi tiết
oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 15:26

tích mình đi

ai tích mình 

mình tích lại 

thanks

KAl(SO4)2·12H2O
28 tháng 7 2018 lúc 15:30

Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)

=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương

Phan Lương Tuấn
6 tháng 12 2020 lúc 22:04

Cho mình hỏi tại sao \(a^2+b^2=4\times\left(k^2+k+m^2+m\right)+2\)thì \(a^2+b^2\)không phải là số chính phương

Khách vãng lai đã xóa
nguyễn thu ngà
Xem chi tiết
phạm thị tít
Xem chi tiết
Trần Ngọc Hà
Xem chi tiết
Cao Khánh An
Xem chi tiết
Cao Khánh An
13 tháng 3 2019 lúc 18:12

giúp mk đi sặp nộp bài rùi!!!!!!!!!!!!!!!!!!

le thi phuong hoa
Xem chi tiết
Nguyễn Hiền Mai
3 tháng 10 2015 lúc 11:17

 

3/ Ta có: A=xxyy=1000x+100x+10y+y=1100x+11y=11(100x+y)

Đề A là scp thì 100x+y =11.t2 (t thuộc Z) (1)

Ta có: 1=<x=<9 <=>100=<100x=<900(2)

                0=<y=<9 (3)

Từ (2) và (3)=> 100=<100x+y=<909 (4)

Từ (1) và (4)=> 100x+y thuộc {176;275;396;539;704;891}

Mà 100x+y là số có dạng x0y(có dấu gạch trên đầu)

Do đó, x0y=704=> x=7 và y= 4

 

Hoa lưu ly
8 tháng 4 2015 lúc 21:21

Bài 2:

a/ gọi 3 số chính phương liên tiếp đó là: (x-1)2;x2;(x+1)2

Ta có: (x-1)2+x2+(x+1)2= x2-2x+1+x2+x2+2x+1= 3x2+2 

=> Tổng 3 số cp liên tiếp chia 3 dư 2

c/ Gọi 2 số lẻ đó là (2x-1)2 và (2x+1)2

(2x-1)2+(2x+1)2= 4x2-4x+1 +4x2+4x+1

                       = 8x2+2=2(4x2+1)

Ta có: 2 chia hết cho 2

=> 2(4x2+1) là scp thì 4x2+1 chia hết cho 2

mà 4x2+1 là số lẻ nên không chia hết cho 2

Do đó. tồng bình phương của 2 số lẻ bất kì không phải là số chính phương

 

Hoa lưu ly
8 tháng 4 2015 lúc 21:28

3/ Ta có: A=xxyy=1000x+100x+10y+y=1100x+11y=11(100x+y)

Đề A là scp thì 100x+y =11.t2 (t thuộc Z) (1)

Ta có: 1=<x=<9 <=>100=<100x=<900(2)

                0=<y=<9 (3)

Từ (2) và (3)=> 100=<100x+y=<909 (4)

Từ (1) và (4)=> 100x+y thuộc {176;275;396;539;704;891}

Mà 100x+y là số có dạng x0y(có dấu gạch trên đầu)

Do đó, x0y=704=> x=7 và y=4

 

Nguyễn Thị Diệu
Xem chi tiết