Cho tam giác ABC nội tiếp đường tròn (O;R) có BC = 2R và AB < AC. Đường thẳng xy là tiếp tuyến với đường tròn (O) tại A. Tiếp tuyến tại B và C của đường tròn (O;R) lần lượt cắt đường thẳng xy ở D và E. Gọi F là trung điểm của đoạn DE.
a) Chứng minh ADBO là tứ giác nội tiếp
b) Gọi M là giao điểm thứ hai của FC với đường tròn (O;R). Chứng minh: ∠CED = 2∠AMB
c) Tính tích MC.BF theo R.