Cho các sô tự nhiên x và y thỏa mãn 1\(\le\)y < x\(\le\)30
Tìm giá trị lớn nhất của phân số \(\frac{xy}{x-y}\)
Cho số tự nhiên x và y thỏa mãn 1=<y<x=<30
a, tính giá trị lớn nhất của phân số A= (\(\frac{x+y}{x-y}\)
b, tính giá trị lớn nhất của phân số B=\(\frac{xy}{x-y}\)
a, để p\s x+y\x-y có GTLN thì tử lớn nhất và mẫu bé nhất
ta chọn x=30 và y= 29
thìGTLN của nó = 59
tương tự câu b tử nhỏ nhất và mẫu lớn nhất
bạn ơi nhầm rồi câu b phải làGTNN chứ
Cho các số tự nhiên x,y thỏa mãn x+y=101
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức T=\(x^2-xy+y^2\)
Có xy ≤ 1/4 (x+y)^2
=> 3xy ≤ 3/4 (x+y)^2
=> T = x^2-xy+y^2 = (x+y)^2 - 3xy ≥ (x+y)^2 - 3/4 (x+y)^2 = 1/4 (x+y)^2
=10201/4
Dấu = xảy ra khi x=y=101/2
T = (x+y)^2 - 3xy <= (x+y)^2 = 101^2 = 10201
Dấu = xảy ra khi 1 số = 0, 1 số = 101
1. Cho x,y,z là ba số dương thay đổi và thỏa mãn \(^{x^2+y^2+z^2\le xyz}\)
Hãy tìm giá trị lớn nhất của biểu thức \(A=\frac{x}{x^2+yz}+\frac{y}{y^2+zx}+\frac{z}{z^2+xy}\)
2. Cho x,y,z là các số thực không âm thỏa mãn \(x^2+y^2+z^2=3\)
Tìm giá trị lớn nhất của biểu thức \(B=xy+yz+zx+\frac{5}{x+y+z}\)
Cho x,y là các số thực dương thỏa mãn \(xy+1\le x\). Tìm giá trị nhỏ nhất của biểu thức
\(Q=\frac{x+y}{\sqrt{3x^2-xy+y^2}}.\)
Cho các số thực x, y dương thỏa mãn x + \(\dfrac{1}{y}\) \(\le\) 1; Tìm giá trị nhỏ nhất của biểu thức:
P = \(\dfrac{x^2-2xy+2y^2}{x^2+xy}\)
\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\Rightarrow\dfrac{y}{x}\ge4\)
\(P=\dfrac{1-\dfrac{2y}{x}+2\left(\dfrac{y}{x}\right)^2}{1+\dfrac{y}{x}}\)
Đặt \(\dfrac{y}{x}=a\ge4\Rightarrow P=\dfrac{2a^2-2a+1}{a+1}=2a-4+\dfrac{5}{a+1}\)
\(P=\dfrac{a+1}{5}+\dfrac{5}{a+1}+\dfrac{9}{5}.a-\dfrac{21}{5}\ge2\sqrt{\dfrac{5\left(a+1\right)}{5\left(a+1\right)}}+\dfrac{9}{5}.4-\dfrac{21}{5}=5\)
Dấu "=" xảy ra khi \(a=4\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)
1) Cho x,y,z là các số thực thỏa mãn \(0\le x,y,z\le1\). Chứng minh rằng
\(\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\le\left(1-xyz\right)^3\)
2) Cho x,y là các số thực thỏa mãn \(x^2+xy+y^2=3\). Tìm giá trị lớn nhất và nhỏ nhất của biểu thức
\(P=2x^2-5xy+2y^2\)
Bài 2:
Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)
\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)
Tìm GTNN:
Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)
\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)
\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)
Chúc bạn học tốt.
Làm bài 1 ha :)
Áp dụng BĐT Cô si ta có:
\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)
Khi đó:
\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)
Giống Holder ghê vậy ta :D
cho xy là các số thực dương thỏa mãn\(xy+1\le x\)
tìm giá trị nhỏ nhất của biểu thức \(Q=\frac{x+y}{\sqrt{3x^2-xy+y^2}}\)
Cho các số thực dương thay đổi x, y thỏa mãn điều kiện 3x + y \(\le\)1. Tìm giá trị nhỏ nhất của biểu thức A = \(\frac{1}{x}+\frac{1}{\sqrt{xy}}\)
Theo đề ta suy ra \(y\le1-3x\)
\(\Rightarrow\sqrt{xy}\le\sqrt{x\left(1-3x\right)}\)
Ta có \(A=\frac{1}{x}+\frac{1}{\sqrt{xy}}\ge\frac{1}{x}+\frac{1}{\sqrt{x\left(1-3x\right)}}\ge\frac{1}{x}+\frac{1}{\frac{x+\left(1-3x\right)}{2}}=\frac{2}{2x}+\frac{2}{-2x+1}\)
\(=2\left(\frac{1}{2x}+\frac{1}{-2x+1}\right)\ge2.\frac{\left(1+1\right)^2}{2x-2x+1}=8\)
Vậy \(A\ge8\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=1-3x=y\\\frac{1}{2x}=\frac{1}{-2x+1}\\3x+y=1\end{cases}}\) \(\Leftrightarrow\) \(x=y=\frac{1}{4}\)
cho các số thực không âm x,y,z thỏa mãn x2+y2+z2=3
1.chứng minh xy2+yz2+zx2\(\le\)2+xyz\(\frac{x}{2+y}+\frac{y}{2+z}+\frac{z}{2+x}\)
2. tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thwucs P=
1. Không mất tính tổng quát, giả sử: \(x\ge y\ge z\)
\(\Rightarrow x\left(y-z\right)\left(y-x\right)\le0\Leftrightarrow x\left(y^2-xy-yz+xz\right)\le0\)
\(\Leftrightarrow xy^2+yz^2+zx^2\le x^2y+yz^2+xyz\)
Ta chứng minh
\(x^2y+yz^2\le2\Leftrightarrow y\left(x^2+z^2\right)\le2\Leftrightarrow y\left(3-y^2\right)\le2\)
\(\Leftrightarrow y^3+2\ge3y\)
Áp dụng bđt cô - si cho 3 số không âm:
\(y^3+2=y^3+1+1\ge3\sqrt[3]{y^3.1.1}=3y\)
Lúc đó \(\Leftrightarrow xy^2+yz^2+zx^2\le2+xyz\)
Đẳng thức xảy ra khi x = y = z = 1