Cho tam giác ABC có S=\(\frac{\left(a-b+c\right)\left(a+b-c\right)sinA}{2}\).Tính góc A
CHO TAM GIÁC ABC, ĐẶT ĐỘ DÀI 3 CẠNH BC=a, CA=b, AB=c
CHO BIẾT: \(\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b}=\frac{ca}{b+c}+\frac{ab}{c+a}+\frac{bc}{a+b}\)
A) CM TAM GIÁC ABC CÂN
B) NẾU CHO THÊM: \(c^4+abc\left(a+b\right)=c^2\left(a^2+b^2\right)+\left(c+b\right)\left(c-b\right)bc+\left(c-a\right)\left(c+a\right)ac\) .TÍNH CÁC GÓC CỦA TAM GIÁC ABC
1) Cho tam giác ABC, biết góc C : góc B : góc A = 1 : 3 : 6
a/ Tính các góc của tam giác ABC
b/ Tia phân giác góc ngoài đỉnh C của tam giác ABC cắt đường thẳng AB ở E. Tính góc AEC.
2) Cho A = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1\right)\)
So sánh A với \(\frac{-1}{2}\)
HLEP ME, PLEASE!!!!!!!!!!
2) TA CÓ 1/22-1=(1/2-1)x(1/2+1)=-1/2x3/2
1/32-1=(1/3-1)x(1/3+1)=-2/3X4/3..............1/992-1=(1/99-1)(1/99+1)=-98/99x100/99;1/1002-1=(1/100-1)x(1/100+1)=-99/100x101/100
ta có A=-(1/2x2/3x.....98/99x99/100)x(3/2x4/3x......x100/99x101/100)=-1/100x101/2=-101/50<-1/2
TA CÓ 1/22-1=(1/2-1)X(1/2+1)=-1/2X3/2 ;1/32-1=(1/3-1)X(1/3+1)=-2/3X4/3.....................
1/992-1=(1/99-1)X(1/99+1)=-98/99X100/99 ;1/1002-1=(1/100-1)X(1/100+1)=99/100X101/100
VẬY A=-(1/2X2/3X.......X98/99X99/100)X(3/2X4/3X....X100/99X101/100)=-101/50<-1/2
1) Cho tam giác ABC, biết góc C : góc B : góc A = 1 : 3 : 6
a/ Tính các góc của tam giác ABC
b/ Tia phân giác góc ngoài đỉnh C của tam giác ABC cắt đường thẳng AB ở E. Tính góc AEC.
2) Cho A \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
So sánh A với \(\frac{-1}{2}\)
HELP ME, PLEASE!!!!!!!!
2) \(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(A=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-9999}{100^2}\)
\(A=-\left(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{9999}{100^2}\right)\) (vì có 99 thừa số âm nên kết quả là âm)
\(A=-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3.}.\frac{3.5}{4.4}...\frac{99.101}{100.100}\right)\)
\(A=-\left(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\right)\)
\(A=-\left(\frac{1}{100}.\frac{101}{2}\right)\)
\(A=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
Trả lời câu nào cũng được nha mấy bạn! Help me, please!!!!!!!
1) Gọi 2 góc A, B, C của tam giác lần lượt là x,y,z (a,b,c khác 0)
Vì góc C : góc B : góc A = 1 : 3 : 6
=> \(\frac{z}{1}=\frac{y}{3}=\frac{x}{6}\) và x + y + z = 180o
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{z}{1}=\frac{y}{3}=\frac{x}{6}=\frac{z+y+x}{1+3+6}=\frac{180^o}{10}=18^o\)
=> \(\begin{cases}z=18^o.1=18^o\\y=18^o.3=54^o\\x=18^o.6=108^o\end{cases}\)
Vậy góc A = 108o; góc B = 54o; góc C = 18o
Cho tam giác ABC có số đo 3 cạnh là a,b,c.
Chứng minh rằng:
a)Nếu tam giác ABC có góc A bằng 60 độ thì S(ABC)=\(\frac{\sqrt{3}}{4}\cdot\left[a^2-\left(b-c\right)^2\right]\)
b)Nếu góc A bằng 120 độ thì sao?
Cho tam giác ABC có độ dài 3 cạnh a, b, c thỏa mãn \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}=9\)
Chứng minh rằng tam giác ABC đều
a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .
ta áp dụng (a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)) >=9
dễ chứng minh bdt phụ này
rùi từ đây suy ra 3(a-b)(b-c)(c-a) = 0 => a=b=c (1)
mà lên bđt phụ trên thì xảy ra khi a=b=c (1)
từ (1) , (2) , ta suy ra a=b=c hay đpcm
vì k chặt chẽ lắm nên thông cảm
Cho tam giác ABC. CMR:
sinA=\(\frac{2}{bc}\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)
\(VT=\frac{2S}{bc}=VP\)(Heron)
1) Cho tam giác ABC, biết góc C : góc B : góc A = 1 : 3 : 6
a/ Tính các góc của tam giác ABC
b/ Tia phân giác góc ngoài đỉnh C của tam giác ABC cắt đường thẳng AB ở E. Tính góc AEC.
2) Cho A = \(\left(\frac{1}{2^2}-1\right)\) \(\left(\frac{1}{3^2}-1\right)\) \(\left(\frac{1}{4^2}-1\right)\) \(......\) \(\left(\frac{1}{100^2}-1\right)\)
So sánh A với \(\frac{-1}{2}\)
HELP ME, PLEASE!!!!!!!!!!!
a2 = bc
\(\Rightarrow a.a=b.c\Rightarrow\frac{a}{b}=\frac{c}{a}\Rightarrow\frac{a}{c}=\frac{b}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Cho tam giác ABC, biết \(\overrightarrow{a}=\overrightarrow{AB}=\left(a_1;a_2\right)\) và \(\overrightarrow{b}=\overrightarrow{AC}=\left(b_1;b_2\right)\). Để tính diện tích S của tam giác ABC. Một học sinh làm như sau:
1) Tính cosA= \(\frac{\overrightarrow{a}.\overrightarrow{b}}{\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|}\)
2) Tính sinA= \(\sqrt{1-cos^2A}=\sqrt{1-\frac{\left(\overrightarrow{a}.\overrightarrow{b}\right)^2}{\left(\left|\overrightarrow{a}\right|^2.\left|\overrightarrow{b}\right|^2\right)}}\)
3) S= \(\frac{1}{2}AB.AC.sinA=\frac{1}{2}\sqrt{\left|\overrightarrow{a}\right|^2\left|\overrightarrow{b}\right|^2}-\left(\overrightarrow{a}.\overrightarrow{b}\right)^2\)
4) S= \(\frac{1}{2}\sqrt{\left(a^{2_1}+a^{2_2}\right)\left(b^{2_1}+b^{2_2}\right)-\left(a_1b_1+a_2b_2\right)^2}\)
S=\(\frac{1}{2}\sqrt{\left(a_1b_2+a_2b_1\right)^2}\)
S=\(\frac{1}{2}\left(a_1b_2-a_2b_1\right)\)
Cho tam giác ABC có BC = a , AC = b , AB = c và AH là đường cao. Chứng minh :
a) CH = \(\frac{a^2+b^2-c^2}{2a}\)
b) BH = \(\frac{a^2-b^2+c^2}{2a}\)
c) S2 ( diện tích tam giác ABC bình phương ) = \(\frac{1}{16}\left[\left(a^2+b^2+c^2\right)^2-2\left(a^4+b^4+c^4\right)\right]\)