Câu 6: Cho tam giác ABC vuông tại A, biết sinC = 0,6. Tính các tỉ số lượng giác của góc B
a)Cho tam giác ABC vuông tại A, biết AB=4cm; BC=5cm, Tonhs cosC+TanB
b) Cho tam giác ABC vuông tại A, có AB=5cm,BC=10cm. Tính sinC và số đo góc B
c) Cho tam giác ABC vuông tại A, biết cosB=8cm. hãy tính các tỉ số lượng giác của góc C. E c.ơn ạ!
Câu a) với b) tính cos, tan, sin là tính góc hay cạnh vậy cậu?
a) Xét \(\Delta ABC\) vuông tại `A`
Ta có: \(BC^2=AB^2+AC^2\) (đl Pytago)
\(\Rightarrow5^2=4^2+AC^2\\ \Rightarrow AC^2=5^2-4^2\\ \Rightarrow AC^2=25-16=9\\ \Rightarrow AC=\sqrt{9}=3cm\)
Vậy: \(AC=3cm\)
Ta có: \(CosC=\dfrac{AC}{BC}\left(tslg\right)\)
\(\Rightarrow CosC=\dfrac{3}{5}\\ \Rightarrow CosC\approx53^o\)
Vậy: Góc C khoảng \(53^o\)
Ta có: \(TanB=\dfrac{AC}{AB}\left(tslg\right)\)
\(\Rightarrow TanB=\dfrac{3}{4}\\ \Rightarrow TanB\approx37^o\)
Vậy: Góc B khoảng \(37^o\)
_
b) Xét \(\Delta ABC\) vuông tại `A`
Ta có: \(BC^2=AB^2+AC^2\) (đl Pytago)
\(\Rightarrow10^2=5^2+AC^2\\ \Rightarrow AC^2=10^2-5^2\\\Rightarrow AC^2=100-25=75\\ \Rightarrow AC=\sqrt{75}=5\sqrt{3}cm\)
Vậy: \(AC=5\sqrt{3}cm\)
Ta có: \(SinC=\dfrac{AB}{BC}\left(tslg\right)\)
\(\Rightarrow SinC=\dfrac{5}{10}\\ \Rightarrow30^o\)
Vậy: Góc C là \(30^o\)
Ta có: \(SinB=\dfrac{AC}{BC}\left(tslg\right)\)
\(\Rightarrow SinB=\dfrac{5\sqrt{3}}{10}\\ \Rightarrow SinB=60^o\)
Vậy: Góc B là \(60^o\).
Cho tam giác abc vuông tại a biết sinC=\(\frac{3}{5}\). Hãy tính tỉ số lượng giác của C.Từ đó suy ra tỉ số lượng giác góc B.
\(\cos C=\sqrt{1-\sin^2C}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}\)
\(\Rightarrow\cos C=\frac{4}{5}\)
\(\Rightarrow\tan C=\frac{\sin C}{\cos C}=\frac{3}{5}:\frac{4}{5}=\frac{3}{4}\)và \(\cot C=\frac{4}{3}\)
Ta có: \(\widehat{C};\widehat{B}\)là hai góc phụ nhau
\(\Rightarrow\hept{\begin{cases}\sin C=\cos B\\\cos C=\sin B\end{cases};\hept{\begin{cases}\tan C=\cot B\\\cot C=\tan B\end{cases}}}\)
\(\Rightarrow\sin B=\frac{4}{5};\cos B=\frac{3}{5};\tan B=\frac{4}{3};\cot B=\frac{3}{4}\)
Ta có: \(\sin C=\frac{AB}{BC}=\frac{3}{5}\)
=> \(\frac{AB}{3}=\frac{BC}{5}=k\left(k\inℕ\right)\)
=> \(\hept{\begin{cases}AB=3k\\BC=5k\end{cases}}\)
=> \(AC=\sqrt{\left(5k\right)^2-\left(3k\right)^2}=\sqrt{16k^2}=4k\)
Đến đây thì xong rồi:))
\(\sin B=\frac{AC}{BC}=\frac{4k}{5k}=\frac{4}{5}\) ; \(\cos B=\frac{AB}{BC}=\frac{3k}{5k}=\frac{3}{5}\)
\(\tan B=\frac{AC}{AB}=\frac{4k}{3k}=\frac{4}{3}\) ; \(\cot B=\frac{AB}{AC}=\frac{3k}{4k}=\frac{3}{4}\)
Cho tam giác ABC vuông tại a. Biết cosB=0,6 cm, hãy tính các tỉ số lượng giác của góc C
Xét $\Delta ABC$:
$\cos B=\sin C=0,6$
$\cos^2B=0,6.0,6=0,36$
Mà $\cos^2B+\sin^2B=1$
$\Rightarrow \sin^2B=0,64\\\Leftrightarrow \sinB=0,8(vì\,\,\sinB>0)$
$\Rightarrow \sin B=\cos C=0,8$
Ta có: $\tan C=\dfrac{\sin C}{\cos C}=\dfrac{0,6}{0,8}=0,75$
$\cotC=\dfrac{\cosC}{\sinC}=\dfrac{0,8}{0,6}=\dfrac{4}{3}$
Vậy $\sin C=0,6;\cos C=0,8;\tanC=0,75;\cotC=\dfrac{4}{3}$
cho tam giác ABC , góc A = 90 độ , biết sinC = 1/2 . Tính các tỉ số lượng giác của góc B
Cho tam giác ABC vuông tại A hãy tính các tỉ số lượng giác của góc Cbiết rằng cosB = 0,6
cho tam giác ABC vuông tại A có sinB=0,6
Hãy tính các tỉ số lượng giác của góc C
cho tam giác ABC vuông tại A có sinB=0,6
Hãy tính các tỉ số lượng giác của góc C
Cho tam giac ABC vuông tại B=0,6.tính các tỉ số lượng giác của góc c
cho tam giác abc vuông tại a có sinb = 0,6. tính các tỉ số lượng giác của góc c