tìm Min P = căn(x+2) + căn(2-x) - căn(4-x^2)
tìm Min P = căn(x+2) + căn(2-x) - căn(4-x^2)
giải hộ em
a,Tìm min, max: 4x-16 căn x+4y-22 căn y-4 căn xy+36
b, tìm max :B= 6 cẵn+3/2x+4
c, Tìm Min : C=2/1-x+1/x
Tìm min A=căn(x^2-x+3) + căn(x^2+x+3)
\(A=\sqrt{\left(\dfrac{1}{2}-x\right)^2+\left(\dfrac{\sqrt{11}}{2}\right)^2}+\sqrt{\left(\dfrac{1}{2}+x\right)^2+\left(\dfrac{\sqrt{11}}{2}\right)^2}\)
\(\ge\sqrt{\left(\dfrac{1}{2}-x+\dfrac{1}{2}+x\right)^2+\left(\dfrac{\sqrt{11}}{2}+\dfrac{\sqrt{11}}{2}\right)^2}\)
\(=\sqrt{12}\)
"=" xảy ra khi x = 0
biet x,y,z>0 thoa man căn xy +căn yz+ căn zx=1.tìm min A=x^2/(x+y) +y^2/(y+z)+z^2/(z+x)
áp dụng BĐT C-S dạng engel : A >/ x+y+z
áp dụng BĐT AM-GM x+y+z >/ căn xy + căn yz + căn zx
=>minA = 1
bạn ghi rõ ra dùm mình vs bạn Hoàng Phúc.mình chua học bdt này nên hơi khó hiểu tí
Tìm min
E = căn x2 + 2019
F = căn x2 + x + 4
mình đang cần gấp
\(E=\sqrt{x^2+2019}\ge\sqrt{2019}\) vậy min của E=\(\sqrt{2019}\)
dấu ''='' xảy ra khi và chỉ khi x=0
\(F=\sqrt{x^2+x+4}=\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{15}{4}}\ge\sqrt{\frac{15}{4}}\)
vậy min của F=\(\sqrt{\frac{15}{4}}\)
dấu ''='' xảy ra khi và chỉ khi x=-1/2
mình cũng ko biết có đúng ko nếu sai bạn thông cảm
bài 1rút gọn bt a, 2 căn 10 - 5 trên 4 - căn 10 b, (2/3 căn 3) - (1/4 căn 18) + (2/5 căn 2) - 1/4 căn 12 bài 2:c/m các đẳng thức : [căn x + căn y trên căn x - căn y) - ( căn x - căn y trên căn x + căn y) : căn xy trên x-y =4 bài 3: cho B={[2 căn x trên căn x +3] + [ căn x trên căn x - 3] - 3[ căn x +3] trên x-9} : { [ 2 căn x -2 trên căn x -3] -1} a, rút gọn b, tìm x để P<-1 Mọi ng giúp mk nhé
Tìm x, biết:
1/ căn x^2 -4 - căn x-2=0
2/ căn x+5=1+căn x
3/ căn x+5+ căn 5-x=0
4/ căn x+5+ căn 5-x=4
5/ căn 3-x+ căn x-5=10
cậu cho mk xin link facebook của jonathan galindo đi rồi mk sẽ trả lời câu hỏi của cậu
Cho p=(2 căn x -9)/(căn x-2)(căn x-3) - (căn x+3)/(căn x-2) - (2 căn x+1)/(3-căn) ( x > 0; x ≠ 4, x ≠ 9)
a. Rút gọn P
b. Tìm x để P = 5
c. Tìm x nguyên để P có giá trị là số tự nhiên.
Cho x,y,z là các số thực dương : xy+yz+xz=1. Tìm min của P = ( căn( x2 +1) + căn(y2 +1) + căn(z2 +1))/(x+y+z)
\(\frac{\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}}{\sqrt{x+y+z}}\)
Đặng Viết Thái tử đúng rồi còn mẫu không có căn
\(x = { \sqrt{x^2+1} + \sqrt{y^2+1} + \sqrt{z^2+1} \over x + y+z}\)