Tìm x thuộc Z để biểu thức P=2019-|x-3|^2019 đạt giá trị lớn nhất
Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất:
a) P=2019-(x+1)^2020
b) Q=2020-|2019-x|
Bạn hỏi câu này bên Hoidap247 đúng không nè? :)
a) Ta có : \(\left(x+1\right)^{2020}\ge0\forall x\inℤ\)
\(\Rightarrow2019-\left(x+1\right)^{2020}\le2019\)
Dấu "=" xảy ra khi \(\left(x+1\right)^{2020}=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
Vậy GTLN của P = 2019 tại \(x=-1\).
b) Ta có : \(\left|2019-x\right|\ge0\forall x\inℤ\)
\(\Rightarrow2020-\left|2019-x\right|\le2020\)
Dấu "=" xảy ra khi \(\left|2019-x\right|=0\)
\(\Rightarrow2019-x=0\)
\(\Rightarrow x=2019\)
Vậy GTLN của Q = 2020 tại \(x=2019\).
a) \(P=2019-\left(x+1\right)^{2020}\)
Ta có \(\left(x+1\right)^{2020}\ge0\forall x\)
\(\Rightarrow2019-\left(x+1\right)^{2020}\ge2019\)
Dáu "=" xảy ra <=> \(\left(x+1\right)^{2020}=0\)
<=> x+1=0
<=> x=-1
Vậy MaxA=2019 đạt được khi x=-1
b) \(Q=2020-\left|2019-x\right|\)
Ta có \(\left|2019-x\right|\ge0\forall x\)
\(\Rightarrow2020-\left|2019-x\right|\ge2020\)
Dấu "=" xảy ra <=> |2019-x|=0
<=> 2019-x=0
<=> x=2019
Vậy MaxQ=2020 đạt được khi x=2019
Tìm số nguyên x để:
a) Biểu thức A đạt giá trị lớn nhất với \(A=\frac{15}{19-x}\)
b) Biểu thức B đạt giá trị nhỏ nhất với \(B=\frac{2016}{x-2019}\)
a, Để A nhận giá trị lớn nhất thì 19 - x nhận giá trị nguyên dương nhỏ nhất : \(19-x=1\Leftrightarrow x=18\)
b, Để B nhận giá trị nhỏ nhất thì x - 2019 nhận giá trị nguyên âm lớn nhất : \(x-2019=-1\Leftrightarrow x=2018\)
Cho biểu thức P = \(\dfrac{mx-2019}{x^2}\) (x≠0). Tìm các số thực dương m để biểu thức P
có giá trị lớn nhất bằng 2019
\(P=-\dfrac{2019}{x^2}+\dfrac{m}{x}=-2019\left(\dfrac{1}{x^2}-2.\dfrac{m}{2.2019}.\dfrac{1}{x}\right)\)
\(=-2019\left(\dfrac{1}{x^2}-2.\dfrac{m}{4038}.\dfrac{1}{x}+\dfrac{m^2}{4038^2}-\dfrac{m^2}{4038^2}\right)=-2019\left(\dfrac{1}{x}-\dfrac{m}{4038}\right)^2+\dfrac{2019m^2}{4038^2}\le\dfrac{2019m^2}{4038^2}\)
\(\Rightarrow\dfrac{2019m^2}{4038^2}=2019\Rightarrow m=\pm4038\)
\(P=\dfrac{mx-2019}{x^2}\Rightarrow px^2-mx+2019=0\)
\(\Delta=m^2-4.2019P\ge0\)
\(\Leftrightarrow P\le\dfrac{m^x}{8076}\)
để \(\max\limits_P=2019\) thì \(\dfrac{m^2}{8076}=2019\)
\(\Leftrightarrow m^2=8076.2019\)
\(=2.2.2019.2019\)
\(\Leftrightarrow m=4038\)(vì m>0)
vậy m=4038
Tìm cặp giá trị nguyên( x , y) để biểu thức A = 3| 2x - 4 | + 5y2 + 2019 đạt giá trị nhỏ nhất.
Hic , nãy đag làm dở ấn nhầm nút hủy ... h pk lm lại
\(A=3\left|2x-4\right|+5y^2+2019\)
Vì \(\hept{\begin{cases}3\left|2x-4\right|\ge0\\5y^2\ge0\end{cases}}\)
\(\Rightarrow A\ge0+0+2019=2019\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3\left|2x-4\right|=0\\5y^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-4=0\\y^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=0\end{cases}}}\)
Vậy với x = 2 và y = 0 thì Amin = 2019
Tìm x THUỘC Z để biểu thức:
a) /x-3/-7 đạt giá trị nhỏ nhất
b)/x+1/+/-5/ đạt giá trị nhỏ nhất
c)7-/x-2/ đạt giá trị lớn nhất
d) -9-/x+5/ đạt giá trị lớn nhất
cho hàm số f(x) thỏa mãn 2f(x) - x. f(-x) = x+10. tính f(2)
Cho ba số dương x, y, z thỏa mãn điều kiện x2019 + y2019 + z2019 = 3
Tìm giá trị lớn nhất của biểu thức M = x2 + y2 + z2
Vì x,y,z dương = > x2019 ; y2019 ; z2019
Ta có : 3 = 1 + 1 + 1 hoặc = 1 + 2 + 0
Mà nếu một số = 2 ( g/s là x2019 ) = > x ko là số dương = > Loại trường hợp có số hạng 2
= > x2019 + y2019 + z2019 = 1 + 1 + 1
= > x2019 = y2019 = z2019 = 1 = > x = y = z = 1
= > M = x2 + y2 + z2 = 12 + 12 + 12 = 1 + 1 + 1 = 3
Vậy M = 3
Tìm x để biểu thức sau đạt giá trị nhỏ nhất.Hãy tìm giá trị nhỏ nhất đó
A=2018+\(|x-2019|\)
Vì \(\left|x-2019\right|\ge0\forall x\)
\(\Rightarrow A\ge2018\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)
Vậy Amin = 2018 <=> x = 2019
Cho biểu thức: G=2x+3/x-1
A) tìm x thuộc Z để G có giá trị nguyên.
B) Tìm c thuộc Z để G đạt giá trị lớn nhất
1) Cho biểu thức A=2006-x/6-x. tìm giá trị nguyên của x để A đạt giá trị lớn nhất. tìm giá trị lớn nhất đó.
2) tìm giá trị nhỏ nhất của biểu thức: P=4-x/14-x;(x thuộc Z). khi đó x nhận giá trị nguyên nào ?
tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam