Hãy so sánh\(^{\frac{2007}{2008}+\frac{2008}{2009}+\frac{2010}{2011}+\frac{2011}{2008}}\)và 4
M = \(\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}\)
So sánh M với 4
2007/2008<1
2008/2009<1
2009/2010<1
2010<2011<1
=>2007/2008+2008/2009+2009/2010+2010/2011<1+1+1+1
=>2007/2008+2008/2009+2009/2010+2010/2011<4(điều cần chứng minh)
2007/2008 < 1
2008/2009 < 1
2009/2010 < 1
2010/2011 < 1
=> 2007/2008 + 2008/2009 + 2009/2010 + 2010/2011 < 1 + 1 + 1 + 1
=>2007/2008 + 2008/2009 + 2009/2010 + 2010/2011 < 4 ( điều cần chứng minh )
ai tk mình mình tk lại cho
2007/2008+2008/2009+2009/2010+2010/2011<4
Cho A = \(\frac{2000}{2001}+\frac{2001}{2002}+\frac{2002}{2003}+\frac{2003}{2004}+\frac{2005}{2006}+\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\)
Hãy so sánh tổng các phân số trong A và so sánh với 15.
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
So sánh : \(A=\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}vàB=\frac{2008+2009+2010}{2009+2010+2011}\)
So sánh : A=\(\frac{2008}{2009}\)+\(\frac{2009}{2010}\)+\(\frac{2010}{2011}\)và B=\(\frac{2008+2009+2010}{2009+2010+2011}\)
\(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(< \frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}=A\)
\(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}=\frac{2009}{2009+2010+2011}=\frac{2010}{2009+2010+2011}\)
\(< A=\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}\)
\(B=\frac{\frac{2008}{2011}+\frac{2009}{2010}+\frac{2010}{2009}+\frac{2011}{2008}+\frac{2012}{503}}{\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}}\)
So sánh
A=\(\frac{2006}{2007}-\frac{2007}{2008}+\frac{2008}{2009}-\frac{2009}{2010}\)
B=\(-\frac{1}{2006.2007}-\frac{1}{2008.2009}\)
So sánh
B=\(-\frac{1}{2011}-\frac{7}{11^2}-\frac{5}{11^3}-\frac{3}{11^4}\)
A=\(-\frac{1}{2011}-\frac{3}{11^2}-\frac{5}{11^4}\)
So sánh: \(A=\frac{2008}{2009}\)+ \(\frac{2009}{2010}\) + \(\frac{2010}{2016}\) và \(B=\frac{2008+2009+2010}{2009+2010+2011}\)
Ta có :
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{20101}{2009+2010+2011}\)
Ta thấy \(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\); \(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\);
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
Suy ra : A > B
So sánh:
\(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}\)và 4
Mk đang cần gấp, mong các bạn trả lời nhanh giúp mk nha. Cảm ơn các bạn nhiều.
\(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}=1-\frac{1}{2009}+1-\frac{1}{2010}+1-\frac{1}{2011}+1+\frac{3}{2008}=1+1+1+1+\frac{1}{2008}+\frac{1}{2008}+\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}=4+\left(\frac{1}{2008}-\frac{1}{2009}\right)+\left(\frac{1}{2008}-\frac{1}{2010}\right)+\left(\frac{1}{2008}-\frac{1}{2011}\right)\left(vì:2008>2009>2010>2011\right)\Rightarrow\frac{1}{2008}>\frac{1}{2009}>\frac{1}{2010}>\frac{1}{2011}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2008}-\frac{1}{2009}>0\\\frac{1}{2008}-\frac{1}{2010}>0\\\frac{1}{2008}-\frac{1}{2011}>0\end{matrix}\right.\Rightarrow4+\left(\frac{1}{2008}-\frac{1}{2009}\right)+\left(\frac{1}{2008}-\frac{1}{2010}\right)+\left(\frac{1}{2008}-\frac{1}{2011}\right)>4+0+0+0=4\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}>4\)
So sánh A và B biết \(A=\frac{2006}{2007}-\frac{2007}{2008}+\frac{2008}{2009}-\frac{2009}{2010};B=\frac{1}{2006.2007}-\frac{1}{2008.2009}\)