5/2x4+5/4x6+5/6x8+.....+5/48x60
tính bằng cách hợp lí
5/ 2x4 + 5/ 4x6 + 5/ 6x8 +.....+ 5/ 14x16
A=5/2x(2/2x4+2/4x6+2/6x8+...+2/14x16)
=5/2x(1/2-1/4+1/4-1/6+...+1/14-1/16)
=5/2x(1/2-1/16)
=5/2x(7/16)
=35/32
Giải
1/2x4+1/4x6+1/6x8+...+1/96x98+1/98x100
= 1/2 x (1/2 - 1/4 + 1/4 - 1/6 + 1/6-1/8 + ... + 1/98 - 1/100)
= 1/2 x (1/2 - 1/100)
= 1/2 x 98/100
= 98/200
ĐS: 98/200
=5/2x(2/2x4+2/4x6+2/6x8+...+2/14x16)
=5/2x(1/2-1/4+1/4-1/6+...+1/14-1/16)
=5/2x(1/2-1/16)
=5/2x(7/16)
=35/32
C= 32/ 2x4 + 52/4x6 + 72/6x8 + 992/98x100
Mình đag rất cần
32/2x4+52/4x6+...+992/98x100
=9/8+25/24+...+9801/9800
=1+1/8+1+1/24+...+1+1/9800
=1+1+...+1+1/2.4+1/4.6+...+1/98.100
= 49 + A
với A=1/2.4+1/4.6+...+1/98.100
=1/4(1/1.2+1/2.3+...+1/49.50)
=1/4(1-1/2+1/2-1/3+...+1/49-1/50)
=1/4(1-1/50)
=1/4.49/50
=49/200
ta có:32/2x4+52/4x6+...+992/98x100= 49+A= 49+49/200=9849/200
chúc bạn hok tốt
b1 : tìm x
a] [ 1/2x5 + 1/5x8 + 1/8x11 + ......+ 1/65x68 ] x X = 11/68
b] X - [ 12/2x4 + 12/4x6 + 12/ 6x8+...+12/48x50 ] = 1/5
c] X + [ 5/5 + 5/45 + 5/117+ 5/221 + ...+5/1845 ] =2
A=5/1x6+5/6x11+5/11x16+5/16x21+...+5/101x106
B=3/1x4+3/4x7+3/7x10+....+3/97x100
C=1/2x7+1/7x12+1/12x17+....+1/97x102
D=1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72
E=3/2x4+3/4x6+3/6x8+....+3/98x100
A = \(\dfrac{5}{1.6}\)+\(\dfrac{5}{6.11}\)+\(\dfrac{5}{11.16}\)+\(\dfrac{5}{16.21}\)+...+\(\dfrac{5}{101.106}\)
A = \(\dfrac{1}{1}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{101}-\dfrac{1}{106}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{106}\)
A = \(\dfrac{105}{106}\)
B = \(\dfrac{3}{1.4}\) +\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{97.100}\)
B = \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
B = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)
B = \(\dfrac{99}{100}\)
C = \(\dfrac{1}{2.7}+\dfrac{1}{7.12}\) + \(\dfrac{1}{12.17}\)+...+ \(\dfrac{1}{97.102}\)
C= \(\dfrac{1}{5}\) \(\times\)( \(\dfrac{5}{2.7}+\dfrac{5}{7.12}+\dfrac{5}{12.17}+...+\dfrac{5}{97.102}\))
C = \(\dfrac{1}{5}\)\(\times\)(\(\dfrac{1}{2}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{12}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{17}\)+...+ \(\dfrac{1}{97}\) - \(\dfrac{1}{102}\))
C = \(\dfrac{1}{5}\) \(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{102}\))
C = \(\dfrac{1}{5}\) \(\times\) \(\dfrac{25}{51}\)
C = \(\dfrac{5}{51}\)
D = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)
D = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)+\(\dfrac{1}{7.8}\)+ \(\dfrac{1}{8.9}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)
D = \(\dfrac{1}{1}\) - \(\dfrac{1}{9}\)
D = \(\dfrac{8}{9}\)
E = \(\dfrac{3}{2.4}\)+\(\dfrac{3}{4.6}\)+\(\dfrac{3}{6.8}\)+...+\(\dfrac{3}{98.100}\)
E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{2}{2.4}\) + \(\dfrac{2}{4.6}\)+ \(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{98.100}\))
E = \(\dfrac{3}{2}\)\(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\) - \(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{98}\) - \(\dfrac{1}{100}\))
E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{100}\))
E = \(\dfrac{3}{2}\) \(\times\) \(\dfrac{49}{100}\)
E = \(\dfrac{147}{200}\)
A=2x4+4x6+6x8+....+98x100
S=2x4+4x6+6x8+...+98x100+100x102
S=(2+98)*(4+6)+...+100+100+102
100*10+....+100+100*102
=224400
tinh F=2x4+4x6+6x8+....+100x102
tinh F = 2x4+4x6+6x8+....+100x102
1/2x4+1/4x6+1/6x8+...+1/40x42
\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{40.42}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{40}-\dfrac{1}{42}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{42}\right)\)
\(=\dfrac{1}{2}.\dfrac{10}{21}\)
\(=\dfrac{5}{21}\)
\(#Wendy.Dang\)
\(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{40\cdot42}\)
\(=\dfrac{1}{2}\cdot\left(2\cdot\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{40\cdot42}\right)\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{40\cdot42}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{40}-\dfrac{1}{42}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{42}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{41}{42}\)
\(=\dfrac{41}{84}\)