Cho tam giác vuông ABC vuông ở A có AB bằng 8 cm, AC bằng 15 cm, đường cao AH a) Tính BC, BH, AH
b) Gọi M, N lần lượt là các hình chiếu của H lên AB và AC. Tứ giác AMNH là hình gì? Tính độ dài MN
c) Chứng minh AM.AB=AN.AC
cho tam giác vuông ABC vuông ở A ; có AB = 8cm ; AC = 15cm ; đường cao AH
a) tính BC ; BH ; AH
b) gọi m,n lần lượt là hình chiếu của H lên AB và AC . tứ giác AMNH là hình gì ? tính độ dài đoạn MN
c) chứng minh AM.AB=AN.AC
Cho tam giác vuông ABC vuông ở A ;có AB = 8cm ; AC =15cm ; đường caoAH.
a) Tính BC ; BH;AH
b)Gọi M,N lần lượt là hình chiếu của H lên AB và AC . Tứ giác AMNH là hình gì? Tính độ dài đoạn MN.
c) Chứng minh : AM.AB=AN.AC
a) XétΔABC vg tại A
⇒ BC²=AB²+AC²
⇒ BC=17cm
Xét ΔABH và ΔCBA có:
góc AHB= góc CBA
góc B: chung
⇒ ΔABH ∞ ΔCBA (g.g)
⇒ AB/BC=BH/BA
⇒ BH=AB²/BC
⇒ BH=64/17
Xét ΔABH vg tại H
⇒AB²=BH²+AH²
⇒ AH=120/17
b) xét tg AMHN có: góc AMH= góc ANH= góc MAN=90
⇒ tg AMHN là hcn (dhnb)
⇒ AH=MN (t/c hcn)
⇒ MN=120/17
, Ta thấy tam giác AMH đồng dạng tam giác AHB (g.g) suy ra AM/AH = AH/ AB => AM.AB =AH^2
tam giác ANH đồng dạng tam giác AHC (g.g)
=> AN/AH = AH/AC
=> AN.AC = AH^2
suy ra AM.AB = AN.AC.
Cho tam giác ABC vuông tại A có AB=8cm AC=15cm Kẻ đường cao AH
a) CM 🔺️AHB và 🔺️CAB đồng dạng. Tính AB
b) Gọi M,N lần lượt là hình chiếu của H trên AB,AC. Tứ giác AMNH là hình gì? Tính độ dài MN
c) CM AM.AB=AN.AC
Cho tam giác vuông ABC vuông ở A ; có AB = 8cm ; AC = 15cm ; đường cao AH
a] Tính BC , BH , AH
b] Gọi M, N lần lượt là hình chiếu của H lên AB và AC . Tứ giác AMNH là hình gì ?
c] chứng minh AM. AB = AN.AC
Cho tam giác ABC vuông tại A, có AB= 8cm, Ac = 15cm, đường cao AH?
a, tính BC, BH, Ah
b, Gọi M,N lần lượt là hình chiếu của H lên AB và AC, AMNH là hình gì? tính đọ dài đoạn MN
c, chứng minh AM.AB=AN.AC
Cho tam giác vuông ABC vuông ở A có đường cao AH. Gọi E ,F lần lượt là hình chiếu của H lên AB và AC.
a. So sánh AH và EF
b. Tính độ dài HF biết AB = 6 cm, BC = 10 cm và BH = 3,6 cm.
Lời giải:
a/ Tứ giác $AEHF$ có 3 góc vuông: $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên là hình chữ nhật.
$\Rightarrow AH=EF$
b/ $HF=AE$ (do $AEHF$ là hcn)
Xét tam giác $AEH$ và $AHB$ có:
$\widehat{A}$ chung
$\widehat{AEH}=\widehat{AHB}=90^0$
$\Rightarrow \triangle AEH\sim \triangle AHB$ (g.g)
$\Rightarrow \frac{AE}{AH}=\frac{AH}{AB}$
$\Rightarrow AE=\frac{AH^2}{AB}=\frac{AB^2-BH^2}{AB}=\frac{6^2-3,6^2}{6}=3,84$ (cm)
Cho tam giác ABC vuông tại A có đườngcao AH. Cho biết AB=8cm, AC=15cm.
a) Tính BC, BH, AH.
b) Gọi M,N lần lượt là hình chiếu của H trên AB và AC. Tứ giác AMNH là hình gì? Tính độ dài đoạn thẳng MN.
c) Chứng minh AM.AB = AN.AC
a) Xét ΔABC vuông tại A ta có:
\(BC^2\)= \(AB^2+AC^2\)
\(BC^2\) = \(8^2+15^2\)
BC = 17 (cm)
Xét ΔHBA và ΔABC ta có:
\(\widehat{AHB}=\widehat{BAC}\) = \(90^0\)
\(\widehat{ABH}=\widehat{ABC}\) (góc chung)
=> ΔHBA~ΔABC (g-g)
=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}=\dfrac{AH}{AC}\) (tsdd)
=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
=> \(AB^2=BH.BC\)
=> \(8^2=17.BH\)
=> BH = \(\dfrac{64}{17}\) (cm)
Lại có: \(\dfrac{AB}{BC}=\dfrac{AH}{AC}\) (cmt)
=> \(\dfrac{8}{17}=\dfrac{AH}{15}\)
=> AH = \(\dfrac{120}{17}\) (cm)
b) Xét tg AMNH ta có:
\(\widehat{MAN}=90^0\) (ΔABC vuông tại A)
\(\widehat{AMH}=90^0\) (M là hình chiếu của H lên AB)
\(\widehat{ANH}=90^0\) (N là hình chiếu của H lên AC)
=> Tg AMNH là hcn
Ta có: \(\left\{{}\begin{matrix}AH=\dfrac{120}{17}\\AH=MN\end{matrix}\right.\)
=> MN = \(\dfrac{120}{7}\)
c) Xét ΔAMH và ΔAHB ta có:
\(\widehat{MAH}=\widehat{BAH}\) (góc chung)
\(\widehat{AMH}=\widehat{AHB}\) = \(90^0\)
=> ΔAMH ~ ΔAHB (g-g)
=> \(\dfrac{AM}{AH}=\dfrac{AH}{AB}\) (tsdd)
=> \(AH^2=AM.AB\)
Tương tự như trên xét ΔANH và ΔAHC
=> \(\dfrac{AN}{AH}=\dfrac{AH}{AC}\) (tsdd)
=> \(AH^2=AN.AC\)
=> đpcm (=\(AH^2\))
Cho tam giác ABC vuông tại A có AB= 8cm, AC= 15 cm, đường cao AH
a) Tính BC và AH
b) Gọi MN là hình chiếu của H nên AB và AC. Tứ giác AMNH là hình gì? Tính độ dài MN
c) Chứng minh: AM.AB=AN.AC
d) Tam giác ABC cần thêm điều kiện gì để diện tích tứ giác AMHN bằng 1212diện tích tam giác ABC.
Các bạn giúp mình câu d với! Các câu a,b,c mình tự giải được nhé! Cảm ơn các bạn nhiều!
áp dụng Pytago cho tam giác ABC ta đc: BC= \(\sqrt{15^2+8^2}=17\)
diện tích tam giác ABC=1/2. AB.BC = 1/2 AH.BC => AB.BC=AH.BC=> AH=15.8:17=120/17
b, Tứ giác AMNH là hình chữ nhật vì có 3 góc vuông.
suy ra MN=AH = 120/17
c, Ta thấy tam giác AMH đồng dạng tam giác AHB (g.g) suy ra AM/AH = AH/ AB => AM.AB =AH^2
tam giác ANH đồng dạng tam giác AHC (g.g) => AN/AH = AH/AC => AN.AC = AH^2
suy ra AM.AB = AN.AC.
d. góc HAB = góc ACB ( cùng phụ góc CAH)
suy ra tam giác AMH đồng dạng tam giác CAB.
theo bài ta có \(S_{AMHN}=2S_{AMH}=\frac{1}{2}S_{CAB}\)
suy ra \(\frac{S_{AMH}}{S_{CAB}}=\frac{1}{4}\) mà 2 tam giác này đồng dạng nên suy ra \(\left(\frac{AH}{BC}\right)^2=\frac{1}{4}\Rightarrow\frac{AH}{BC}=\frac{1}{2}\Rightarrow AH=\frac{1}{2}BC\)
do đó tam giác ABC phải vuông cân.
Bổ sung đề bài câu d,
Tam giác ABC cần thêm điều kiện gì để diện tích tứ giác AMHN bằng \(\frac{1}{2}\) diện tích tam giác ABC.
Cho tam giác ABC vuông tại A, AB=8cm, AC=15cm, đường cao AH.
a) Tính BC, AH
b) Gọi M, N là hình chiếu của H trên AB và AC. Tứ giác AMNH là hình gì?
c) Chứng minh: AM. AB = AN. AC
d) Gọi P,Q lần lượt là trung điểm của BH và HC. Tính diện tích tứ giác MPQN.
a, Xét tam giác ABC vuông tại A, đường cao AH
\(AB^2+AC^2=BC^2\Rightarrow BC^2=64+225=289\Rightarrow BC=17\)cm
Xét tam giác AHC và tam giác BAC ta có :
^AHC = ^BAC = 900
^C _ chung
Vậy tam giác AHC ~ tam giác BAC ( g.g )
\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\)( tỉ số đồng dạng )
\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{8.15}{17}=\frac{120}{17}\)cm
b, Vì MH vuông AB
NA vuông AB
=> MH // NA tương tự ta có : MH // AN
=> tứ giác AMNH là hình bình hành
mà ^HNA = 900 ; ^BAC = 900 ; ^HMA = 900
=> tứ giác AMHN là hình vuông
xin lỗi mình nhầm, => tứ giác AMNH là hình chữ nhật
Cho tam giác ABC vuông tại A,đường cao AH. Gọi M,N lần lượt là hình chiếu vuông góc của H lên AB và AC. a, biết AC bằng 16 cm, sinCAH=4/5. Tính độ dài các cạnh BC,AB và cosB b,chứng minh AM x AB = AN x AC và tam giác ABC đồng dạng với tam giác AMN. c, chứng minh MA x MB + NA × NC=HB×HC d, Chứng minh S AMN/ S ABC=sin²B×sin²C
b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)