Lập pttq của đường thẳng của Δ đi qua 2 điểm: M(-2;1); N(4;0)
Lập PTTS và PTTQ của đường thẳng đi qua điểm M và có vtcp n biết: 2 M (1-2); u= (10) 6 M (5:3); u = (-3;1)
Lập phương trình tổng quát của đường thẳng Δ trong mỗi trường hợp sau:
a) Δ đi qua M(–5; –8) và có hệ số góc k = –3;
b) Δ đi qua hai điểm A(2; 1) và B(–4; 5).
a) Phương trình đường thẳng Δ đi qua M(–5; –8) và có hệ số góc k = –3 là:
y = –3.(x + 5) – 8 ⇔ 3x + y + 23 = 0.
b) Ta có: A(2; 1), B(–4; 5) ⇒
Δ đi qua hai điểm A(2; 1) và B(–4; 5)
⇒ Δ nhận là một vtcp
⇒ Δ nhận là một vtpt.
Phương trình tổng quát của đường thẳng Δ là:
(Δ) : 4(x – 2) + 6(y -1) = 0
Hay 4x + 6y – 14 = 0 ⇔ 2x + 3y – 7 = 0.
1, viết PTTQ của đường thẳng đi qua A (3;-4) có VTPT u = (2;1) 2, Viết PTTS của đường thẳng đi qua A (3;-4) có VTCP u = (-3;3) 3, Viết PTTQ, PTTS của đường thẳng đi qua M (3;4), N(-1;2)
1.
Phương trình:
\(2\left(x-3\right)+1\left(y+4\right)=0\Leftrightarrow2x+y-2=0\)
2.
Phương trình tham số: \(\left\{{}\begin{matrix}x=3-3t\\y=-4+3t\end{matrix}\right.\)
3.
\(\overrightarrow{NM}=\left(4;2\right)=2\left(2;1\right)\)
\(\Rightarrow\) Đường thẳng MN nhận (2;1) là 1 vtcp và (1;-2) là 1 vtpt
Phương trình tổng quát (chọn điểm M để viết):
\(1\left(x-3\right)-2\left(y-4\right)=0\Leftrightarrow x-2y+5=0\)
Phương trình tham số: \(\left\{{}\begin{matrix}x=3+2t\\y=4+t\end{matrix}\right.\)
(d): y=ax+b
Vì (d) đi qua điểm I(-1;2) nên: -a+b=2
Mà (d) vuông góc với đth: y=\(\dfrac{2}{3}x+\dfrac{7}{3}\) nên: a.\(\dfrac{2}{3}\)= -1 => a=\(\dfrac{-3}{2}\)
=> b=\(\dfrac{1}{2}\)
Do đó: (d): y=\(\dfrac{-3}{2}\)x+\(\dfrac{1}{2}\)
Lập phương trình đường thẳng y= ax + b,biế
1. Δ đi qua điểm A(3;-2) và B(2;1)
2. Δ đi qua điểm E(3;3) và song song với đường thẳng d : y=-3x+2 3. ΔΔ đi qua điểm G(1;1) và vuông góc với đường thẳng d: y=-x+1
1: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}3a+b=-2\\2a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=1-2a=1-2\cdot\left(-3\right)=7\end{matrix}\right.\)
2: Vì (d)//y=-3x+2 nên a=-3
Vậy: y=-3x+b
Thay x=3 và y=3 vào y=-3x+b, ta được:
b-9=3
hay b=12
Lập PTTQ và PTTS của đường thẳng Δ biết: △ đi qua hai điểm A và B là hình chiếu của điểm M(2;-7) lên hai trục Ox,Oy.
Mình xin cảm ơn.
\(A\left(2;0\right);B\left(0;-7\right)\)
\(\Rightarrow\overrightarrow{BA}=\left(2;7\right)\Rightarrow\) đường thẳng AB nhận \(\left(7;-2\right)\) là 1 vtpt
Phương trình AB:
\(7\left(x-2\right)-2\left(y-0\right)=0\Leftrightarrow7x-2y-14=0\)
Lập phương trình thanh số, phương trình tổng quát của đường thẳng Δ biết: d. Δ đi qua D(2; 5) và E(3; 1)
e. Δ đi qua G(2; 5) và song song với đường thẳng d: 2x-3y-3 = 0
g. Δ đi qua H(2; 5) và vuông góc với đường thẳng d: x + 3y + 2 = 0
Viết PTTS, PTCT(nếu có), PTTQ của các đường thẳng đi qua điểm M và vuông góc với đường thẳng d:
a)M(2; 3), d: 4x-10y+1=0
b)M(-1; 2), d\(\equiv\)0x
Lập phương trình tham số của đường thẳng: Đi qua M(2 ; 3 ; -5) và song song với đường thẳng (Δ): ∆ : x = - 2 + 2 t y = 3 - 4 t z = - 5 t
(Δ) nhận là 1 vtcp
+ (d) cần tìm song song với (Δ)
⇒ (d) nhận là 1 vtcp
+ (d) đi qua M(2; 3; -5)