a. Cho A(3;1), B(1;-3), C thuộc trục Oy là 3 đỉnh của tam giác ABC có diện tích bằng 3. Tìm toạ độ điểm C
b. Cho A(3;1), B(1;-3), trọng tâm của tam giác ABC thuộc trục hoành. Tìm tọa độ diểm C biết diện tích tam giác ABC bằng 3
Cho a thuộcZ CM : a^3- 19a chia hết cho 6
Cho A = 1 + 3 + 3^2 + ...+ 3^21 + 3^22 + 3^ 23 .CM
a) A chia hết cho 13
b) A chía hết cho 40
1)CMR:
a)a3-7a chia hết cho 6
b)a3-13a chia hết cho 6
c)a3+5a chia hết cho 6
d)a3+11a chia hết cho 6
2) Cho a+b+c chia hết cho 6 . CMR:a3+b3+c3 chia hết cho 6
3)a3-a chia hết cho 24a
4)a3b-b3a chia hết cho 6(a,b thuộc Z)
Xét \(\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)\)
\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)\)
Ta có \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮6\)(vì tích của 3 số nguyên/số tự nhiên liên tiếp)
Tương tự ta có \(\left(b^3-b\right)⋮6;\left(c^3-c\right)⋮6;\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)⋮6\)
Mà \(a+b+c+d⋮6\Rightarrow a^3+b^3+c^3+d^3⋮6\left(ĐPCM\right)\)
P/S: bt làm có bài này thôi :v
3) a=2=>a^3-a=8-2=6 ko chia hết cho 48 vô lí :(
ra nhieu the ai lam het duoc vay ban
1) Cho a + b= -2, a^2 + b^2 = 52. Tính a^3 +b^3
2) Cho a + b = 7, a^2 + b^2 = 25. TÍnh a^3 + b^3, a^4 + b^4
3) Cho a + b = 5, a^2 + b^2 = 53. Tính a^3 + b^3, a^4 + b^4
ta có: a + b=-2 ; a^2 + b^2 = 52
=> (a+b)^2 = 4 => a^2 + 2ab + b^2 = 4
=> 52 + 2ab= 4
=> 48= -2ab
=> ab= -24
a^3 + b^3 = (a+b)( a^2-ab+ b^2)
=> a^3 + b^3 = -2.(52+24)= -2. 76= -152
3)Cho so thuc a sao cho a+1/a=3. Tính a^2 + 1/a^2 , a^3 + 1/a^3 , a^4 = 1/a^4
Ta có
\(\frac{a+1}{a}=3\Leftrightarrow a+1=3a\Leftrightarrow2a=1\Leftrightarrow a=0,5.\)
Thay a=0,5 vào a^2+1/a^2 ta được
\(a^2+\frac{1}{a^2}=0,5^2+\frac{1}{0,5^2}=4,25\)
Làm tương tự với các câu còn lại
Cho a1^3,a2^3,a3^3,...,a2016^3 có tổng chia hết cho 5. CM: a1^3+a2^3+a3^3+...........+a2016^3 chia hết cho 5.
Cho (a+b+c)^2 = 3(ab+bc+ca). CMR: a=b=c
Cho a^3+b^3+c^3 = 3abc. CMR: a=b=c và a+b+c=0
Cho a+b+c=0. CMR: a^3+b^3+c^3 = 3abc
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`
A = 3 + 3^2+ 3^3 + 3^3 + ... + 3^132
a, chứng tỏ A chia hết cho 40
b, chứng tỏ A chia hết cho 39
c, chứng tỏ A chia hết cho 120
a: A=3(1+3+3^2+3^3)+...+3^129(1+3+3^2+3^3)
=40(3+...+3^129) chia hết cho 40
b: A=(3+3^2+3^3)+....+3^129(3+3^2+3^3)
=39(1+...+3^129) chia hết cho 39
c: A chia hết cho 40
A chia hết cho 3
=>A chia hết cho BCNN(40;3)=120
Cho A = 1 + 3 + 3 ^ 2 + 3 ^ 3 + .....3 ^ 11 .Chứng minh rằng :a, A chia hết cho 13 b,A chia hết cho 40
a) Ta có :
A = 1 + 3 + 32 + .... + 311
A = (1 + 3 + 32) + (33 + 34 + 35) + (36 + 37 + 38) + (39 + 310 + 311)
A = 1 . (1 + 3 + 9) + 33 . (1 + 3 + 9) + 36 . (1 + 3 + 9) + 39 . (1 + 3 + 9)
A = 1. 13 + 33 . 13 + 36 . 13 + 39 . 13
A = 13 . (1 + 33 + 36 + 39) chia hết cho 13 (ĐPCM)
b) Ta có :
A = 1 + 3 + 32 + 33 + ... + 311
A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
A = 1 . (1 + 3 + 9 + 27) + 34 . (1 + 3 + 9 + 27) + 38 . (1 + 3 + 9 + 27)
A = 1 . 40 + 34 . 40 + 38 . 40
A = 40 . (1 + 34 + 38) chia hết cho 40 (ĐPCM)
Ủng hộ mk nha !!! ^_^
a) Ta có :
A = 1 + 3 + 32 + .... + 311
A = (1 + 3 + 32) + (33 + 34 + 35) + (36 + 37 + 38) + (39 + 310 + 311)
A = 1 . (1 + 3 + 9) + 33 . (1 + 3 + 9) + 36 . (1 + 3 + 9) + 39 . (1 + 3 + 9)
A = 1. 13 + 33 . 13 + 36 . 13 + 39 . 13
A = 13 . (1 + 33 + 36 + 39) chia hết cho 13 (ĐPCM)
b) Ta có :
A = 1 + 3 + 32 + 33 + ... + 311
A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
A = 1 . (1 + 3 + 9 + 27) + 34 . (1 + 3 + 9 + 27) + 38 . (1 + 3 + 9 + 27)
A = 1 . 40 + 34 . 40 + 38 . 40
A = 40 . (1 + 34 + 38) chia hết cho 40 (ĐPCM)
cho a1+a2+a3+. . .+an chia hết cho 3. Chứng minh a13+a23+a33+. . .+an3 cũng chia hết cho 3
CMR:
a) (a-b+c)3+(a+b-c)3+(-a+b+c)3 chia hết cho 3 (a+b+c chia hết cho 3)
b) với a, b, c là các số tự nhiên có đúng 1 số lẻ và 2 số chẵn. CMR:
(a+b+c)3-(a-b+c)3-(a+b-c)3-(-a+b+c)3 chia hết cho 96