Cho p làm 1 số nguyên tố lớn hơn 3. Chứng minh rằng 2017-p3 chia hết cho 24.
Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng (p + 2015)(p + 2017) chia hết cho 24.
Vì p là số nguyên tố lớp hơn a nên p là số lẻ.
\(\Rightarrow\left(p+2015\right)\left(p+2017\right)⋮8\text{ }\) (1)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng \(3k+1\) và \(3k+2\) \(\left(k\inℕ^∗\right)\)
+) Với \(p=3k+1\)
\(\Rightarrow\left(p+2015\right)\left(p+2017\right)=\left(3k+2016\right)\left(3k+2018\right)⋮3\) (Vì \(3k⋮3\text{ };\text{ }2016⋮3\) ở số đầu tiên) (2)
+) Với \(p=3k+2\)
\(\Rightarrow\left(p+2015\right)\left(p+2017\right)=\left(3k+2017\right)\left(3k+2019\right)⋮3\) (Vì \(3k⋮3\text{ };\text{ }2019⋮3\) nên số thứ hai chia hết cho 3 (3)
Từ (1) ; (2) và (3), suy ra \(\left(p+2015\right)\left(p+2017\right)⋮24\) (đpcm)
Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng 2017- p2 chia hết cho 24
Vì p nguyên tố > 3
=> p \(̸⋮\)3
=> p2 chia 3 dư 1 [vì số cp chia 3 dư 0,1]
Lại có: 2017 chia 3 dư 1
=> 2017 - p2 \(⋮3\)
Tương tự như trên, ta có:
p nguyên tố > 3
=> p lẻ và p không chia hết cho 8
=> p2 chia 8 dư 1 [vì số cp chia 8 dư 0,1,4 và p lẻ]
Lại có: 2017 chia 8 dư 1
=> 2017 - p2 \(⋮\)8
Mà UCLN của 3 và 8 là 1 => 2017-p2 \(⋮\)24
Vì p nguyên tố > 3
=> p ̸⋮ 3
=> p2
chia 3 dư 1 [vì số cp chia 3 dư 0,1]
Lại có: 2017 chia 3 dư 1
=> 2017 - p2 ⋮3
Tương tự như trên, ta có:
p nguyên tố > 3
=> p lẻ và p không chia hết cho 8
=> p2
chia 8 dư 1 [vì số cp chia 8 dư 0,1,4 và p lẻ]
Lại có: 2017 chia 8 dư 1
=> 2017 - p2 ⋮ 8
Mà UCLN của 3 và 8 là 1 => 2017-p2 ⋮ 24
:3
cho p là số nguyên tố lớn hơn 3, chứng tỏ rằng số A=(p-1).(p+2017) luôn chia hết cho 24
cho p là số nguyên tố lớn hơn 3. chứng minh rằng (p+2015)(p+2017) chia hết cho 24
giải giúp mk với
Vì p là số nguyên tố lớn hơn 3 nên p lẻ
=> p+2015 và p+2017 là 2 số chẵn liên tiếp
=> (p+2015)(p+2017) chia hết cho 8(1)
mặt khác p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 và 3k+2
Nếu p=3k+1 thì (p+2015)(p+2017)=(3k+1+2015)(3k+1+2017)=3(k+672)(3k+2018) chia hết cho 3=>(p+2015)(o+2017) chia hết cho 3(2)
Nếu p=3k+2 chứng minh tương tự ta đc (p+2015)(p+2017) chia hết cho 3(3)
Từ (1),(2),(3) => (p+20150(p+2017) chia hết cho 24
=> ĐPCM
tìm x sao cho 2x + 2x+1 + 2x+2 + 2x+3 + ... +2x+2015 = 22017 - 2
giải giúp mình với
Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng p^2-1 chia hết cho 24
nếu p là số nguyên tố lớn hơn 3 \(\Rightarrow\) p không chia hết cho 3
p2 không chia hết cho 3 ⇒ p2 không chia hết cho 24;
Vậy không tồn tại số nguyên tố nào thỏa mãn đề bài.
Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng: (p-2)(p+1) chia hết cho 24.
Vì p là số nguyên tố >3 nên p là số lẻ
→ 2 số p-2,p+1 là 2 số chẵn liên tiếp
→(p-2)(p+1) ⋮ cho 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên
→ p=3k+1 hoặc p=3k+2 (k thuộc N*)
+)Với p=3k+1 → (p-2)(p+1)=3k(3k+2) ⋮ cho 3 (*)
+) Với p=3k+2 → (p-2)(p+1)=(3k-1).3.(k+1) ⋮ 3 (**)
Từ (*) và (**) →(p-2)(p+1) ⋮ 3 (2)
Vì (8;3)=1 → từ (1) và (2) => (p-2)(p+1) ⋮ 24
Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng : ( p - 1 )(p +1 ) chia hết cho 24
đề kiểm tra học kì 2 lớp 6 phải ko? chữa lại làm zì nữa. em tui hôm qua cũng không làm được
p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.
cho P là số nguyên tố lớn hơn 3 . chứng minh rằng ( P-1)( P+1) chia hết cho 24
P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 cho 3
Ta có :P không chia hết cho 2
=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)
Mặt khác:P không chia hết cho 3
Nếu P= 3k +1 thìP-1 =3k chia hết cho 3 => (P-1(P+1) chia hết cho 3
Tương tự: Nếu P= 3k+2 thìP+1=3k +3 chia hết cho 3 => (P-1(P+1) chia hết cho 3(2)
Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 cho 3 mà (8;3)=1 =>(P-1)(P+1) chia hết cho 24
P =3k+1
P=3k+2
Trong TH này P có dạng 3k+2
Vậy ,ta có:
(3k+2-1)(3k+2+1)
vậy Ta KO CM ĐC
Cho p là số nguyên tố lớn hơn 3 . Chứng minh rằng : ( p - 1 ) . ( p + 1 ) chia hết cho 24
Ta có :p-1;p;p+1 là 3 số liên tiếp nên sẽ có 1 số chia hết cho 3.
Mặt khác:p là số nguyên tố nên p không chia hết cho 3=>1 trong 2 số p-1;p+1 chia hết cho 3.(1)
Vì p nguyên tố lớn hơn 3=>p lẻ.=> p-1;p+1 chẵn.
Mặt khác: p-1;p+1 là hai số chẵn liên tiếp =>(p-1).(p+1) chia hết cho 8.(2)
Từ (1)và(2) =>(p-1).(p+1) chia hết cho 8.3 tức là 24.