cho tam giac abc vuông tại a đường cao ah trung tuyến am gọi d,e là hình chiếu cuả h trên ab,ac chứng minh tam giac abc đồng dạng tam giac hbahb=4cm,hc=9cm tính ab,dead.ab=ae.ac
cho tam giac abc vuông tại a đường cao ah trung tuyến am gọi d,e là hình chiếu cuả h trên ab,ac chứng minh tam giac abc đồng dạng tam giac hba
hb=4cm,hc=9cm tính ab,de
ad.ab=ae.ac
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D và E thứ tự là hình chiếu của H trên AB, AC.
a) Chứng minh rằng tam giác ABC đồng dạng tam giác HBA.
b) Cho HB = 4cm, HC = 9cm. Tính AB, DE.
c) Chứng minh AD.AB = AE.AC và AM vuông góc DE.
d) Tam giác ABC phải có điều kiện gì để diện tích tam giác ADE bằng 1/3 diện tích tứ giác BDEC.
Mọi người giúp em với ak""""
a, Xét \(\Delta ABC\left(\perp A\right)\) và \(\Delta HBA\left(\perp H\right)\) có \(\widehat{B}\) chung
b,\(\Delta ABC\sim\Delta HBA\) theo a
\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Leftrightarrow AB^2=HB.BC\)
\(=4.\left(4+9\right)\)
\(\Rightarrow AB=2\sqrt{13}\) (cm)
Áp dụng định lí py-ta-go trong \(\Delta ABH\):
\(AH=\sqrt{AB^2-BH^2}=6\left(cm\right)\)
Vì \(AH=DE=6cm\)
c, Xét \(\Delta HBA\left(\perp H\right)\) và \(\Delta DHA\left(\perp D\right)\) có \(\widehat{A}\) chung
\(\Rightarrow\Delta HBA\sim\Delta DHA\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{AH}=\dfrac{AH}{AB}\Rightarrow AD.AB=AH^2\) \(\left(1\right)\)
Tương tự \(\Delta EHA\sim\Delta HCA\left(g.g\right)\)
\(\Rightarrow\dfrac{AE}{AH}=\dfrac{AH}{AC}\Rightarrow AE.AC=AH^2\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow AD.AB=AE.AC\)
-Chúc bạn học tốt-
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D và E thứ tự là hình chiếu của H trên AB, AC.
a) Chứng minh rằng tam giác ABC đồng dạng tam giác HBA.
b) Cho HB = 4cm, HC = 9cm. Tính AB, DE.
c) Chứng minh AD.AB = AE.AC và AM vuông góc DE.
d) Tam giác ABC phải có điều kiện gì để diện tích tam giác ADE bằng 1/3 diện tích tứ giác BDEC.
Mn giúp em zứi em đang cần nộp gấp ạ
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D và E thứ tự là hình chiếu của H trên AB, AC.
a) Chứng minh rằng tam giác ABC đồng dạng tam giác HBA.
b) Cho HB = 4cm, HC = 9cm. Tính AB, DE.
c) Chứng minh AD.AB = AE.AC và AM vuông góc DE.
d) Tam giác ABC phải có điều kiện gì để diện tích tam giác ADE bằng 1/3 diện tích tứ giác BDEC.
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABH}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=4\cdot13=52\\AH^2=4\cdot9=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}\left(cm\right)\\AH=6\left(cm\right)\end{matrix}\right.\)
Xét tứ giác AEHD có
\(\widehat{EAD}=90^0\)
\(\widehat{AEH}=90^0\)
\(\widehat{ADH}=90^0\)
Do đó: AEHD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=ED(Hai đường chéo)
mà AH=6cm(cmt)
nên ED=6cm
cho tam giác ABC vuông Tại A ;AC lớn hơn AB . Đường cao AH Gọi D và E lần lượt là hình chiếu cuả H trên AB,AC .a)chứng minh :AD.AB=AE.AC và tam giác ABC đồng dạng với tam giác AED
a) Áp dụng hệ thức lượng vào 2 tam giác vuông: AHB và AHC ta có:
\(AH^2=AD.AB\)
\(AH^2=AE.AC\)
suy ra:\(AD.AB=AE.AC\)
b) \(AD.AB=AE.AC\)
=> \(\frac{AD}{AC}=\frac{AE}{AB}\)
Xét tam giác AED và tam giác ABC có:
\(\widehat{A}\)chung
\(\frac{AD}{AC}=\frac{AE}{AB}\)(cmt)
suy ra: \(\Delta AED~\Delta ABC\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là hình chiếu của H trên AB, AC. Biết BH= 4cm, HC=9cm
a) Tính DE?
b) Chứng minh: AD.AB = AE.AC
Cho ABC tam giác vuông tại A, đường cao AH. a)Chứng minh tam giác ABC đồng dạng với tam giác HBA b)Chứng minh AH mũ 2 = H .CHc)Gọi D và E là hình chiếu của H trên AB và AC. Cho biết BH = 4cm, CH = 16cm, hãy tính độ dài DE. d)Kẻ trung tuyến AM của tam giác ABC. Tính tỉ số diện tích của tam giác AMH và tam giác ABC khi biết BH =4cm,CH 16cm
MN giúp mình với ạ. Mình cảm ơn !
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
DO đó:ΔABC\(\sim\)ΔHBA
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
c: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó:ADHE là hình chữ nhật
Suy ra: AH=DE
mà \(AH=\sqrt{4\cdot16}=8\left(cm\right)\)
nên DE=8cm
Cho tam giác ABC vuông góc tại A, đường cao AH. Gọi D và E thứ tự là hình chiếu của H trên AB và AC. a)Tính AH biết HB = 4cm, HC =9cm. b)Chứng minh rằng: AD.AB = AE.AC c)Gọi I, K lần lượt là trung điểm của BH và CH, Chứng minh rằng tứ giác DEKI là hình thang vuông, tính diện tích của tứ giác DEKI.
[ giúp mình nha ]
Cho tam giác ABC vuông tại A , AH là đường cao . D,E là hình chiếu vuông góc của H trên AB , AC .
a, Chứng mình : Tam giác ABH đồng dạng CAH
b, Chứng minh : AD.AB=AE.AC-AH
c, Chứng minh : Đường trung tuyến CM của tam giác ABC đi qua trung điểm của HE
a: Xét ΔABH và ΔCAH có
góc ABH=góc CAH
góc AHB=góc CHA
=>ΔABH đồng dạng với ΔCAH
b: ΔAHB vuông tại H có HD là đường cao
nên AD*AB=AH^2
ΔACH vuông tại H có HE là đường cao
nên AE*AC=AH^2=AD*AB