Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phương anh
Xem chi tiết
iem là ling và iem cảm t...
Xem chi tiết
Vuy năm bờ xuy
7 tháng 6 2021 lúc 1:47

B A C E M H D

a, Xét \(\Delta ABC\left(\perp A\right)\) và \(\Delta HBA\left(\perp H\right)\) có \(\widehat{B}\) chung

b,\(\Delta ABC\sim\Delta HBA\) theo a

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Leftrightarrow AB^2=HB.BC\)

                                     \(=4.\left(4+9\right)\)

\(\Rightarrow AB=2\sqrt{13}\) (cm)

Áp dụng định lí py-ta-go trong \(\Delta ABH\):

\(AH=\sqrt{AB^2-BH^2}=6\left(cm\right)\)

Vì \(AH=DE=6cm\)

c, Xét \(\Delta HBA\left(\perp H\right)\) và \(\Delta DHA\left(\perp D\right)\) có \(\widehat{A}\) chung

\(\Rightarrow\Delta HBA\sim\Delta DHA\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{AH}=\dfrac{AH}{AB}\Rightarrow AD.AB=AH^2\) \(\left(1\right)\)

Tương tự \(\Delta EHA\sim\Delta HCA\left(g.g\right)\)

\(\Rightarrow\dfrac{AE}{AH}=\dfrac{AH}{AC}\Rightarrow AE.AC=AH^2\) \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow AD.AB=AE.AC\)

-Chúc bạn học tốt-

SONG NGƯ
7 tháng 6 2021 lúc 9:57

image

 
Phạm Khánh Huyền
Xem chi tiết
Đỗ Thị Trà My
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 21:36

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABH}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=4\cdot13=52\\AH^2=4\cdot9=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}\left(cm\right)\\AH=6\left(cm\right)\end{matrix}\right.\)

Xét tứ giác AEHD có 

\(\widehat{EAD}=90^0\)

\(\widehat{AEH}=90^0\)

\(\widehat{ADH}=90^0\)

Do đó: AEHD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=ED(Hai đường chéo)

mà AH=6cm(cmt)

nên ED=6cm

Nguyễn yến nhi
Xem chi tiết
Không Tên
18 tháng 8 2018 lúc 20:21

B A C D E H

a)  Áp dụng hệ thức lượng vào 2 tam giác vuông: AHB và AHC ta có:

\(AH^2=AD.AB\)

\(AH^2=AE.AC\)

suy ra:\(AD.AB=AE.AC\)

b)  \(AD.AB=AE.AC\)

=>   \(\frac{AD}{AC}=\frac{AE}{AB}\)

Xét tam giác AED và tam giác ABC có:

\(\widehat{A}\)chung

\(\frac{AD}{AC}=\frac{AE}{AB}\)(cmt)

suy ra: \(\Delta AED~\Delta ABC\)

Bùi Ngọc Linh
Xem chi tiết
Khánh Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2022 lúc 22:12

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

DO đó:ΔABC\(\sim\)ΔHBA

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

c: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó:ADHE là hình chữ nhật

Suy ra: AH=DE

mà \(AH=\sqrt{4\cdot16}=8\left(cm\right)\)

nên DE=8cm

Hongg Anhh
Xem chi tiết
Huyền khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 4 2023 lúc 12:33

a: Xét ΔABH và ΔCAH có

góc ABH=góc CAH

góc AHB=góc CHA

=>ΔABH đồng dạng với ΔCAH

b: ΔAHB vuông tại H có HD là đường cao

nên AD*AB=AH^2

ΔACH vuông tại H có HE là đường cao

nên AE*AC=AH^2=AD*AB