Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Đức
Xem chi tiết
Akai Haruma
31 tháng 12 2023 lúc 11:57

Lời giải:
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(3A=1-\frac{2}{3}+\frac{3}{3^2}-.....+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow 4A=A+3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(12A=3-1+\frac{1}{3}-\frac{1}{3^2}+...-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

$\Rightarrow 4A+12A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}<3$

$\Rightarrow 16A< 3$

$\Rightarrow A< \frac{3}{16}$

robert lewandoski
Xem chi tiết
Michiel Girl mít ướt
9 tháng 5 2015 lúc 12:22

nhưng xl, mk là cn gái ko pải cn trai, muốn ko, thử thj` khắc biết

Michiel Girl mít ướt
9 tháng 5 2015 lúc 18:37

nhưng mk biết robert lewandoski ở đâu mà đánh

Vu Bao Chau
10 tháng 8 2016 lúc 22:07

michel girl oi ban bi dien nang hay sao ma''minh la con gai thu thi biet''??(do oc nho)

trần thùy dương
Xem chi tiết
nhok họ nguyễn
3 tháng 9 2017 lúc 23:58

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

nguyễn khánh linh
Xem chi tiết
Nguyễn Linh Chi
4 tháng 7 2019 lúc 17:44

Câu hỏi của Biêtdongsaigon - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo link này nhé!

Minh Đức Nguyễn
Xem chi tiết
lê hồng phong
Xem chi tiết
uông đức phát
Xem chi tiết
nguyễn bá lương
13 tháng 8 2018 lúc 12:12

ta có A = 1+(1+2)+....+(1+2+..+100) = 1 x 100 + 2 x 99 + ...+100 x 1

\(\Rightarrow\frac{A}{100.1+99.2+...+1.100}=\frac{100.1+99.2+..+1.100}{100.1+99.2+..+100.1}=1\)  

Nguyễn Quốc Gia Khoa
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 10 2021 lúc 16:19

\(\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}=-4\)

\(\Rightarrow\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}+4=0\)

\(\Rightarrow\left(\dfrac{x+1}{99}+1\right)+\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)+\left(\dfrac{x+4}{96}+1\right)=0\)

\(\Rightarrow\dfrac{x+100}{99}+\dfrac{x+100}{98}+\dfrac{x+100}{97}+\dfrac{x+100}{96}=0\)

\(\Rightarrow\left(x+100\right)\left(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{96}\right)=0\)

\(\Rightarrow x=-100\)(do \(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{96}>0\))

Dung Ho
Xem chi tiết
Trần Văn Khánh Hoàng
6 tháng 5 2017 lúc 14:57

Ta có   \(A=\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+....+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+......+\frac{99}{100}}\)

\(A=\frac{200-2\left(\frac{3}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{100}\right)}{\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)}\)

\(A=\frac{2\left[100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+.....+\frac{1}{100}\right)\right]}{100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{100}\right)}\)

\(\Rightarrow A=2\)

Dung Ho
6 tháng 5 2017 lúc 18:36

Ủa sao bạn ra được \(\frac{200-2\left(\frac{3}{2}+\frac{1}{3}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)  số 2 ở 200 đâu ra vậy ! và \(\frac{3}{2}\)nữa !